cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A180662 The Golden Triangle: T(n,k) = A001654(k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 6, 0, 1, 2, 6, 15, 0, 1, 2, 6, 15, 40, 0, 1, 2, 6, 15, 40, 104, 0, 1, 2, 6, 15, 40, 104, 273, 0, 1, 2, 6, 15, 40, 104, 273, 714, 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The terms in the n-th row of the Golden Triangle are the first (n+1) golden rectangle numbers. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers. The mirror image of the Golden Triangle is A180663.
We define below 24 mostly new triangle sums. The Row1 and Row2 sums are the ordinary and alternating row sums respectively and the Kn11 and Kn12 sums are commonly known as antidiagonal sums. Each of the names of these sums, except for the row sums, comes from a (fairy) chess piece that moves in its own peculiar way over a chessboard, see Hooper and Whyld. All pieces are leapers: knight (sqrt(5) or 1,2), fil (sqrt(8) or 2,2), camel (sqrt(10) or 3,1), giraffe (sqrt(17) or 4,1) and zebra (sqrt(13) or 3,2). Information about the origin of these chess sums can be found in "Famous numbers on a chessboard", see Meijer.
Each triangle or chess sum formula adds up numbers on a chessboard using the moves of its namesake. Converting a number triangle to a square array of numbers shows this most clearly (use the table button!). The formulas given below are for number triangles.
The chess sums of the Golden Triangle lead to six different sequences, see the crossrefs. As could be expected all these sums are related to the golden rectangle numbers.
Some triangles with complete sets of triangle sums are: A002260 (Natural Numbers), A007318 (Pascal), A008288 (Delannoy) A013609 (Pell-Jacobsthal), A036561 (Nicomachus), A104763 (Fibonacci(n)), A158405 (Odd Numbers) and of course A180662 (Golden Triangle).
#..Name....Type..Code....Definition of triangle sums.
1. Row......1....Row1.. a(n) = Sum_{k=0..n} T(n, k).
2. Row Alt..2....Row2.. a(n) = Sum_{k=0..n} (-1)^(n+k)*T(n, k).
3. Knight...1....Kn11.. a(n) = Sum_{k=0..floor(n/2)} T(n-k, k).
4. Knight...1....Kn12.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, k+1).
5. Knight...1....Kn13.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+2, k+2).
6. Knight...2....Kn21.. a(n) = Sum_{k=0..floor(n/2)} T(n-k, n-2*k).
7. Knight...2....Kn22.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+1, n-2*k).
8. Knight...2....Kn23.. a(n) = Sum_{k=0..floor(n/2)} T(n-k+2, n-2*k).
9. Knight...3....Kn3... a(n) = Sum_{k=0..n} T(n+k, 2*k).
10. Knight...4....Kn4... a(n) = Sum_{k=0..n} T(n+k, n-k).
11. Fil......1....Fi1... a(n) = Sum_{k=0..floor(n/2)} T(n, 2*k).
12. Fil......2....Fi2... a(n) = Sum_{k=0..floor(n/2)} T(n, n-2*k).
13. Camel....1....Ca1... a(n) = Sum_{k=0..floor(n/3)} T(n-2*k, k).
14. Camel....2....Ca2... a(n) = Sum_{k=0..floor(n/3)} T(n-2*k, n-3*k).
15. Camel....3....Ca3... a(n) = Sum_{k=0..n} T(n+2*k, 3*k).
16. Camel....4....Ca4... a(n) = Sum_{k=0..n} T(n+2*k, n-k).
17. Giraffe..1....Gi1... a(n) = Sum_{k=0..floor(n/4)} T(n-3*k, k).
18. Giraffe..2....Gi2... a(n) = Sum_{k=0..floor(n/4)} T(n-3*k, n-4*k).
19. Giraffe..3....Gi3... a(n) = Sum_{k=0..n} T(n+3*k, 4*k).
20. Giraffe..4....Gi4... a(n) = Sum_{k=0..n} T(n+3*k, n-k).
21. Zebra....1....Ze1... a(n) = Sum_{k=0..floor(n/2)} T(n+k, 3*k).
22. Zebra....2....Ze2... a(n) = Sum_{k=0..floor(n/2)} T(n+k, n-2*k).
23. Zebra....3....Ze3... a(n) = Sum_{k=0..floor(n/3)} T(n-k, 2*k).
24. Zebra....4....Ze4... a(n) = Sum_{k=0..floor(n/3)} T(n-k, n-3*k).

Examples

			The first few rows of the Golden Triangle are:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 2, 6;
  0, 1, 2, 6, 15;
  0, 1, 2, 6, 15, 40;
		

References

  • David Hooper and Kenneth Whyld, The Oxford Companion to Chess, p. 221, 1992.

Crossrefs

Cf. A180663 (Mirror), A001654 (Golden Rectangle), A000045 (F(n)).
Triangle sums: A064831 (Row1, Kn11, Kn12, Kn4, Ca1, Ca4, Gi1, Gi4), A077916 (Row2), A180664 (Kn13), A180665 (Kn21, Kn22, Kn23, Fi2, Ze2), A180665(2*n) (Kn3, Fi1, Ze3), A115730(n+1) (Ca2, Ze4), A115730(3*n+1) (Ca3, Ze1), A180666 (Gi2), A180666(4*n) (Gi3).

Programs

  • Haskell
    import Data.List (inits)
    a180662 n k = a180662_tabl !! n !! k
    a180662_row n = a180662_tabl !! n
    a180662_tabl = tail $ inits a001654_list
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    [Fibonacci(k)*Fibonacci(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
    
  • Maple
    F:= combinat[fibonacci]:
    T:= (n, k)-> F(k)*F(k+1):
    seq(seq(T(n, k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
  • Mathematica
    Table[Times @@ Fibonacci@ {k, k + 1}, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 18 2016 *)
    Module[{nn=20,f},f=Times@@@Partition[Fibonacci[Range[0,nn]],2,1];Table[Take[f,n],{n,nn}]]//Flatten (* Harvey P. Dale, Nov 26 2022 *)
  • PARI
    T(n,k)=fibonacci(k)*fibonacci(k+1) \\ Charles R Greathouse IV, Nov 07 2016
    
  • Sage
    flatten([[fibonacci(k)*fibonacci(k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

T(n, k) = F(k)*F(k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.
From Johannes W. Meijer, Jun 22 2015: (Start)
Kn1p(n) = Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1), p >= 1.
Kn1p(n) = Kn11(n+2*p-2) - Sum_{k=0..p-2} T(n-k+2*p-2, k), p >= 2.
Kn2p(n) = Sum_{k=0..floor(n/2)} T(n-k+p-1, n-2*k), p >= 1.
Kn2p(n) = Kn21(n+2*p-2) - Sum_{k=0..p-2} T(n+k+p, n+2*k+2), p >= 2. (End)
G.f. as triangle: xy/((1-x)(1+xy)(1-3xy+x^2 y^2)). - Robert Israel, Sep 06 2015

A115730 a(n) = a(n-3) + A001654(n-1) with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 2, 6, 16, 42, 110, 289, 756, 1980, 5184, 13572, 35532, 93025, 243542, 637602, 1669264, 4370190, 11441306, 29953729, 78419880, 205305912, 537497856, 1407187656, 3684065112, 9645007681, 25250957930, 66107866110
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

The a(n+1) represent the Ca2 and Ze4 sums of the Golden Triangle A180662. Furthermore the a(3*n) represent the Ze1 (terms doubled) and Ca3 sums of the Golden triangle. See A180662 for more information about these and other triangle sums.

Examples

			G.f. = x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 42*x^6 + 110*x^7 + 289*x^8 + ... - _Michael Somos_, Sep 05 2023
		

Crossrefs

Programs

  • Magma
    function A115730(n)
      if n lt 3 then return Floor(n/2);
      else return A115730(n-3) + Fibonacci(n-1)*Fibonacci(n);
      end if; return A115730;
    end function;
    [A115730(n): n in [0..40]]; // G. C. Greubel, Jan 20 2022
    
  • Maple
    nmax:=31: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):=a(n-3) + A001654(n-1) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,2,0,-2,-2,1}, {0,0,1,2,6,16}, 40] (* modified by G. C. Greubel, Jan 20 2022 *)
    a[ n_] := Floor[(2*Fibonacci[2*n+1] + Fibonacci[2*n+2] + 2)/20]; (* Michael Somos, Sep 05 2023 *)
  • PARI
    {a(n) = (2*fibonacci(2*n+1) + fibonacci(2*n+2) + 2)\20}; /* Michael Somos, Sep 05 2023 */
  • Sage
    U=chebyshev_U
    def A115730(n): return (1/60)*((-1)^n*(6 - 5*U(n, 1/2) + 10*U(n-1, 1/2)) - (10 - 9*U(n, 3/2) + 6*U(n-1, 3/2)))
    [A115730(n) for n in (0..40)] # G. C. Greubel, Jan 20 2022
    

Formula

a(n) = -floor(g(Fibonacci(n+1))) where g(x) = (1-x^2)^2/(-4*x^2).
G.f.: x^2/( (1-x)*(1+x)*(1+x+x^2)*(1-3*x+x^2) ). - R. J. Mathar, Jun 20 2015
a(n) - a(n-2) = A182890(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (1/60)*((-1)^n*(6 - 5*ChebyshevU(n, 1/2) + 10*ChebyshevU(n-1, 1/2)) - (10 - 9*ChebyshevU(n, 3/2) + 6*ChebyshevU(n-1, 3/2))). - G. C. Greubel, Jan 20 2022
a(n) = floor((2*Fibonacci(2*n+1) + Fibonacci(2*n+2) + 2)/20). - Michael Somos, Sep 05 2023

Extensions

Corrected and information added by Johannes W. Meijer, Sep 22 2010
Edited by Editors-in-Chief. - N. J. A. Sloane, Jun 20 2015

A180665 Golden Triangle sums: a(n)=a(n-2)+A001654(n) with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 7, 17, 47, 121, 320, 835, 2190, 5730, 15006, 39282, 102847, 269252, 704917, 1845491, 4831565, 12649195, 33116030, 86698885, 226980636, 594243012, 1555748412, 4073002212, 10663258237, 27916772486, 73087059235
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) are the Kn21, Kn22, Kn23, Fi2, and Ze2 sums of the Golden Triangle A180662. Furthermore the a(2*n) are the Kn3, Fi1 (terms doubled) and Ze3 (terms tripled) sums. See A180662 for information about these and other chess sums.

Crossrefs

Programs

  • Maple
    nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: for n from 2 to nmax do a(n) := a(n-2) + A001654(n) od: seq(a(n),n=0..nmax);

Formula

a(n) = a(n-2)+A001654(n) with a(0)=0 and a(1)=1.
GF(x) = (-x)/((x-1)*(x+1)^2*(x^2-3*x+1)).
a(n) = ((-1)^(-n-1)*(15+10*n)-25+(16-4*A)*A^(-n-1)+(16-4*B)*B^(-n-1))/100 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.

A180666 Golden Triangle sums: a(n)=a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.

Original entry on oeis.org

0, 1, 2, 6, 15, 41, 106, 279, 729, 1911, 5001, 13095, 34281, 89752, 234971, 615165, 1610520, 4216400, 11038675, 28899630, 75660210, 198081006, 518582802, 1357667406, 3554419410, 9305590831, 24362353076, 63781468404
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) are the Gi2 sums of the Golden Triangle A180662. See A180662 for information about these giraffe and other chess sums.

Crossrefs

Programs

  • Maple
    nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: a(2):=2: a(3):=6: for n from 4 to nmax do a(n):=a(n-4)+A001654(n) od: seq(a(n),n=0..nmax);
    A180666 := proc(n)
        option remember;
        if n <=3 then
            op(n+1,[0,1,2,6]) ;
        else
            procname(n-4)+A001654(n) ;
        end if;
    end proc:
    seq(A180666(n),n=0..100 ) ; # R. J. Mathar, Aug 18 2016
  • Mathematica
    Take[Total@{#, PadLeft[Drop[#, -4], Length@ #]}, Length@ # - 4] &@ Table[Times @@ Fibonacci@ {n, n + 1}, {n, 0, 31}] (* or *)
    CoefficientList[Series[(-x)/((x^2 - 3 x + 1) (x - 1) (x + 1)^2 (x^2 + 1)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 18 2016 *)

Formula

a(n) = a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.
G.f.: (-x)/((x^2-3*x+1)*(x-1)*(x+1)^2*(x^2+1)).
a(n) = Sum_{k=0..floor(n/4)} A180662(n-3*k,n-4*k).
120*a(n) = 8*A001519(n) -10*A087960(n) -9*(-1)^n -15 -6*(n+1)*(-1)^n. - R. J. Mathar, Aug 18 2016

A202503 Fibonacci self-fission matrix, by antidiagonals.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2011

Keywords

Comments

The Fibonacci self-fission matrix, F, is the fission P^^Q, where P and Q are the matrices given at A202502 and A202451. See A193842 for the definition of fission.
antidiagonal sums: (1, 3, 8, 18, 38, ...), A064831
diagonal (1, 5, 14, 39, ...), A119996
diagonal (2, 8, 23, 63, ...), A180664
diagonal (2, 5, 15, 39, ...), A059840
diagonal (3, 8, 24, 63, ...), A080097
diagonal (5, 13, 39, 102, ...), A080143
diagonal (8, 21, 63, 165, ...), A080144
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.

Examples

			Northwest corner:
1....1....2....3....5.....8....13...21
2....3....5....8...13....21....34...55
3....5....9...14...23....37....60...97
5....8...15...24...39....63...102...165
8...13...24...39...64...103...167...270
		

Crossrefs

Programs

  • Mathematica
    n = 14;
    Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]];
    Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n];
    P = P1[[Range[2, n], Range[1, n]]];
    F = P.Q;
    Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *)
    Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *)
    Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *)
    TableForm[P]  (* A202502, modified lower triangular Fibonacci array *)
    TableForm[Q]  (* A202451, upper tri. Fibonacci array *)
    TableForm[F]  (* A202503, Fibonacci fission array *)

A202874 Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 5, 8, 8, 5, 8, 13, 14, 13, 8, 13, 21, 23, 23, 21, 13, 21, 34, 37, 39, 37, 34, 21, 34, 55, 60, 63, 63, 60, 55, 34, 55, 89, 97, 102, 103, 102, 97, 89, 55, 89, 144, 157, 165, 167, 167, 165, 157, 144, 89, 144, 233, 254, 267, 270, 272, 270, 267, 254
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....2....3....5....8....13
2....5....8....13...21...34
3....8....14...23...37...60
5....13...23...39...63...102
8....21...37...63...102..167
		

Crossrefs

Cf. A202875.

Programs

  • Mathematica
    s[k_] := Fibonacci[k + 1];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001911 *)
    Table[m[1, j], {j, 1, 12}]     (* A000045 *)
    Table[m[j, j], {j, 1, 12}]     (* A119996 *)
    Table[m[j, j + 1], {j, 1, 12}] (* A180664 *)
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A002940 *)

A180663 Mirror image of the Golden Triangle: T(n,k) = A001654(n-k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 6, 2, 1, 0, 15, 6, 2, 1, 0, 40, 15, 6, 2, 1, 0, 104, 40, 15, 6, 2, 1, 0, 273, 104, 40, 15, 6, 2, 1, 0, 714, 273, 104, 40, 15, 6, 2, 1, 0, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0, 4895, 1870, 714, 273, 104, 40, 15, 6, 2, 1, 0
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

This triangle is the mirror image of the Golden Triangle A180662. The terms in the n-th row of the triangle are the first (n+1) golden rectangle numbers in reversed order. The golden rectangle numbers are A001654(n)=F(n)*F(n+1), with F(n) the Fibonacci numbers.
The chess sums, see A180662 for their definitions, mirror those of the Golden Triangle: Row1 & Row1; Row 2 & Row2; Kn1 and Kn2; Kn3 and Kn4; Fi1 and Fi2; Ca1 and Ca2; Ca3 and Ca4; Gi1 and Gi2; Gi3 and Gi4; Ze1 and Ze2; Ze3 and Ze4.

Examples

			The first few rows of this triangle are:
0;
1, 0;
2, 1, 0;
6, 2, 1, 0;
15, 6, 2, 1, 0;
40, 15, 6, 2, 1, 0;
		

Crossrefs

Cf. A180662 (Golden Triangle), A001654 (Golden Rectangle numbers), A000045 (F(n)).
The triangle sums lead to: A064831 (Row1, Kn21, Kn22, Kn3, Ca2, Ca3, Gi2, Gi3), A077916 (Row2), A180664 (Kn23), A180665 (Kn11, Kn12, Kn13, Fi1, Ze1), A180665(2*n) (Kn4, Fi2, Ze4), A115730(n+1) (Ca1, Ze3), A115730(3*n+1) (Ca4, Ze2), A180666 (Gi1), A180666(4*n) (Gi4).

Programs

  • Haskell
    a180663 n k = a180663_tabl !! n !! k
    a180663_row n = a180663_tabl !! n
    a180663_tabl = map reverse a180662_tabl
    -- Reinhard Zumkeller, Jun 08 2013
  • Maple
    F:= combinat[fibonacci]:
    T:= (n, k)-> F(n-k)*F(n-k+1):
    seq(seq(T(n,k), k=0..n), n=0..10); # revised Johannes W. Meijer, Sep 13 2012
  • Mathematica
    Module[{nn=20,fb},fb=Times@@@Partition[Fibonacci[Range[0,(nn(nn+1))/2]],2,1];Table[ Reverse[Take[fb,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Jan 30 2023 *)

Formula

T(n,k) = F(n-k)*F(n-k+1) with F(n) = A000045(n), for n>=0 and 0<=k<=n.
Showing 1-7 of 7 results.