A181318 a(n) = A060819(n)^2.
0, 1, 1, 9, 1, 25, 9, 49, 4, 81, 25, 121, 9, 169, 49, 225, 16, 289, 81, 361, 25, 441, 121, 529, 36, 625, 169, 729, 49, 841, 225, 961, 64, 1089, 289, 1225, 81, 1369, 361, 1521, 100, 1681, 441, 1849, 121, 2025, 529, 2209, 144, 2401, 625, 2601, 169, 2809, 729
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Wikipedia, Completing the square.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Magma
[n^2/GCD(n,4)^2: n in [0..100]]; // G. C. Greubel, Sep 19 2018
-
Maple
a:=n->n^2/gcd(n,4)^2: seq(a(n),n=0..60); # Muniru A Asiru, Feb 20 2019
-
Mathematica
Table[n^2/GCD[n,4]^2, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *) LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,1,1,9,1,25,9,49,4,81,25,121},60] (* Harvey P. Dale, Jan 18 2025 *)
-
PARI
a(n)=n^2/gcd(n,4)^2 \\ Charles R Greathouse IV, Dec 21 2011
-
Sage
[n^2/gcd(n, 4)^2 for n in (0..100)] # G. C. Greubel, Feb 20 2019
Formula
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x*(1 + x + 9*x^2 + x^3 + 22*x^4 + 6*x^5 + 22*x^6 + x^7 + 9*x^8 + x^9 + x^10)/(1-x^4)^3. - R. J. Mathar, Mar 10 2011
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 16)) = n^2/(gcd(n^2,16)) = (n/gcd(n,4))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 16, 1, 4, 1, 16, ...] is a purely periodic sequence of period 4.
a(n) is a quasi-polynomial in n: a(4*n) = n^2; a(4*n + 1) = (4*n + 1)^2; a(4*n + 2) = (2*n + 1)^2; a(4*n + 3) = (4*n + 3)^2.
O.g.f.: Sum_{d divides 4} A046970(d)*x^d*(1 + x^d)/(1 - x^d)^3 = x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3 - 3*x^4*(1 + x^4)/(1 - x^4)^3. (End)
Sum_{n>=1} 1/a(n) = 5*Pi^2/12. - Amiram Eldar, Aug 12 2022
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 4^max(0, e-2), and a(p^e) = p^(2*e) for p > 2.
Dirichlet g.f.: zeta(s-2)*(1 - 3/2^s - 3/4^s).
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)
a(n) = (37 - 27*(-1)^n - 3*(-1)^(n*(n-1)/2) - 3*(-1)^(n*(n+1)/2)) * n^2/64. - Vaclav Kotesovec, Nov 14 2024
Extensions
Edited by Jean-François Alcover, Oct 01 2012 and Jan 15 2013
More terms from Michel Marcus, Jun 09 2014
Comments