A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1
Examples
20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
Links
Crossrefs
Cf. A000040, A000265, A001511, A001222, A003963, A005361, A007814, A008578, A028234, A046523, A056239, A064553, A064989, A067029, A101296 (restricted growth sequence transform), A108951, A122111, A124010, A124859, A156552, A181820, A181821, A182850, A182855, A182857 (also A323014), A115621, A101296, A238690, A238745, A238747, A238748, A246029, A304465, A304647, A305732, A305733, A320118, A323022, A325501, A325502, A325507, A325508, A325755 (A353566), A325756, A328830 [= a(a(n))], A328835, A351564 (characteristic function of A130091), A351944, A351946, A353379.
Left inverse of A304660.
Programs
-
Haskell
a181819 = product . map a000040 . a124010_row -- Reinhard Zumkeller, Mar 26 2012
-
Maple
A181819 := proc(n) local a; a := 1; for pf in ifactors(n)[2] do a := a*ithprime(pf[2]) ; end do: a ; end proc: seq(A181819(n),n=1..80) ; # R. J. Mathar, Jan 09 2019 # second Maple program: a:= n-> mul(ithprime(i[2]), i=ifactors(n)[2]): seq(a(n), n=1..105); # Alois P. Heinz, Nov 26 2024
-
Mathematica
{1}~Join~Table[Times @@ Prime@ Map[Last, FactorInteger@ n], {n, 2, 120}] (* Michael De Vlieger, Feb 07 2016 *)
-
PARI
a(n) = {my(f=factor(n)); prod(k=1, #f~, prime(f[k,2]));} \\ Michel Marcus, Nov 16 2015
-
Scheme
;; With memoization-macro definec. (definec (A181819 n) (cond ((= 1 n) 1) (else (* (A000040 (A067029 n)) (A181819 (A028234 n)))))) ;; Antti Karttunen, Feb 05 2016
-
Scheme
;; With memoization-macro definec. (definec (A181819 n) (cond ((= 1 n) 1) ((even? n) (* (A000040 (A007814 n)) (A181819 (A000265 n)))) (else (A181819 (A064989 n))))) ;; Antti Karttunen, Feb 07 2016
Formula
From Antti Karttunen, Feb 07 2016: (Start)
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
a(a(n)) = A328830(n).
a(A304660(n)) = n.
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
a(n!) = A325508(n).
(End)
Extensions
Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022
Comments