cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382488 The number of unitary 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

Period 6: repeat [1, 2, 2, 2, 1, 4].
Decimal expansion of 407380/333333.
Continued fraction expansion of 10/(6 + sqrt(66)) (with offset 0).

Crossrefs

The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), this sequence (k = 2), A382489 (k = 3).

Programs

  • Mathematica
    Table[{1, 2, 2, 2, 1, 4}, {12}] // Flatten
  • PARI
    a(n) = [1, 2, 2, 2, 1, 4][(n-1) % 6 + 1];

Formula

Multiplicative with a(p^e) = 2 if p <= 3, and 1 otherwise.
a(n) = A034444(A065331(n)).
a(n) = A034444(n) if and only if n is 3-smooth (A003586).
a(n) = A072078(n) if and only if n is squarefree (A005117).
a(n) = abs(A181982(n+9)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2.
G.f.: -(4*x^6 + x^5 + 2*x^4 + 2*x^3 +2*x^2 + x)/(x^6 - 1).
Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * zeta(s).

A236773 a(n) = n + floor( n^2/2 + n^3/3 ).

Original entry on oeis.org

0, 1, 6, 16, 33, 59, 96, 145, 210, 292, 393, 515, 660, 829, 1026, 1252, 1509, 1799, 2124, 2485, 2886, 3328, 3813, 4343, 4920, 5545, 6222, 6952, 7737, 8579, 9480, 10441, 11466, 12556, 13713, 14939, 16236, 17605, 19050, 20572, 22173, 23855, 25620, 27469
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2014

Keywords

Comments

This sequence follows A074148 and A042965, A236771.
The prime terms are 59, 829, 14939, 35759, 93719, 132409, 155219, 290399, 414179, 487463, ... .
If a(k) is prime then k == 1, 5, 7 or 11 (mod 12).
Third differences: 1, 2, 2, 2, 1, 4 repeated (unsigned terms of A181982).
Fourth differences: 1, 0, 0, -1, 3, -3 repeated (see A131193).

Crossrefs

Cf. A074148: n+floor(n^2/2).
Cf. A042965: n+floor(1/2+n/3); A236771: n+floor(n/2+n^2/3).
Cf. A236772: floor(sum(i=1..n, n^i/i)).

Programs

  • Magma
    [n+Floor(n^2/2+n^3/3): n in [0..50]];
    
  • Magma
    I:=[0,1,6,16,33,59,96,145,210]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)+Self(n-6)-3*Self(n-7)+3*Self(n-8)-Self(n-9): n in [1..50]]; // Vincenzo Librandi, Feb 08 2014
    
  • Maple
    seq(n+floor(n^2/2+n^3/3),n=0..43); # Paolo P. Lava, Aug 24 2018
  • Mathematica
    Table[n + Floor[n^2/2 + n^3/3], {n, 0, 50}]
    CoefficientList[Series[x (1 + 3 x + x^2 + 2 x^3 + 2 x^4 + 2 x^5 + x^7)/((1 + x) (1 - x + x^2) (1 + x + x^2) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    vector(60, n, n--; n+floor(n^2/2 +n^3/3)) \\ G. C. Greubel, Aug 12 2018

Formula

G.f.: x*(1+3*x+x^2+2*x^3+2*x^4+2*x^5+x^7) / ((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x)^4).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9).
Also, for h>=0:
a(6h) = 6*h*( 12*h^2 + 3*h + 1 ),
a(6h+1) = 72*h^3 + 54*h^2 + 18*h + 1,
a(6h+2) = 6*( 4*h + 1 )*( 3*h^2 + 3*h + 1 ),
a(6h+3) = 2*( 36*h^3 + 63*h^2 + 39*h + 8 ),
a(6h+4) = 3*( 24*h^3 + 54*h^2 + 42*h + 11 ),
a(6h+5) = 72*h^3 + 198*h^2 + 186*h + 59.
Showing 1-2 of 2 results.