cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053183 Primes of the form p^2 + p + 1 when p is prime.

Original entry on oeis.org

7, 13, 31, 307, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Also primes in A001001. - Philippe Deléham, Feb 21 2004
This sequence is a subsequence of A002383. These numbers are repunit primes 111_n, so they are Brazilian primes belonging to A085104. - Bernard Schott, Dec 21 2012
Also, primes in A060800. - Zak Seidov, Mar 21 2014
Also subsequence of A002061, A193574. - Hartmut F. W. Hoft, May 05 2017
As p^2 + p + 1 is the sum of divisors of p^2 for any prime p, this is a subsequence of A023195. - Peter Munn, Feb 16 2018

Crossrefs

Programs

  • Mathematica
    a053183[n_] := Select[Map[Prime[#]^2 + Prime[#] + 1&, Range[n]], PrimeQ]
    a053183[225] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[p^2+p+1,{p,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = A053182(n)^2 + A053182(n) + 1.

A185632 Primes of the form n^2 + n + 1 where n is nonprime.

Original entry on oeis.org

3, 43, 73, 157, 211, 241, 421, 463, 601, 757, 1123, 1483, 2551, 2971, 3307, 3907, 4423, 4831, 5701, 6007, 6163, 6481, 8191, 9901, 11131, 12211, 12433, 13807, 14281, 19183, 20023, 20593, 21757, 22651, 23563, 24181, 26083, 26407, 27061, 28393, 31153, 35533
Offset: 1

Views

Author

Bernard Schott, Dec 18 2012

Keywords

Comments

These are the primes associated with A182253.
All these numbers are in A002383 but not in A053183.
All the numbers n^2 + n + 1 = 111_n with n >= 2 are by definition Brazilian numbers: A125134. See Links: "Les nombres brésiliens" - Section V.5 page 35.

Crossrefs

Programs

  • Mathematica
    Select[Table[If[PrimeQ[n],Nothing,n^2+n+1],{n,200}],PrimeQ] (* Harvey P. Dale, Apr 02 2023 *)
  • PARI
    lista(nn) = {for (n = 1, nn, if (! isprime(n) && isprime(p = n^2 + n + 1), print1(p, ", ");););} \\ Michel Marcus, Sep 04 2013

A192321 Semiprime numbers n such that n^2 + n + 1 is prime.

Original entry on oeis.org

6, 14, 15, 21, 33, 38, 57, 62, 69, 77, 111, 119, 141, 143, 155, 161, 194, 203, 206, 209, 215, 218, 278, 287, 309, 314, 329, 381, 395, 398, 447, 453, 489, 533, 537, 551, 554, 566, 579, 626, 635, 671, 755, 785, 818, 878, 899, 959, 974, 993, 1007, 1011, 1041, 1067, 1077, 1133, 1142, 1149, 1191, 1202, 1263
Offset: 1

Views

Author

Jonathan Vos Post, Dec 19 2012

Keywords

Examples

			309 is in the sequence because 309 is semiprime (309 = 3 * 103) and 309^2 + 309 + 1 = 95791 is prime.
		

Crossrefs

Intersection of A182253 and A001358.
Subsequence of A182253.

Programs

  • Mathematica
    Select[Range[2000],PrimeOmega[#]==2&&PrimeQ[#^2+#+1]&] (* Harvey P. Dale, Feb 26 2013 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=isprime(n^2+n+1) && issemi(n) \\ Charles R Greathouse IV, Jun 13 2017

A308238 Nonprimes k such that k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 20, 21, 30, 60, 86, 172, 195, 212, 224, 258, 268, 272, 319, 339, 355, 365, 366, 390, 398, 414, 480, 504, 534, 539, 543, 567, 592, 626, 654, 735, 756, 766, 770, 778, 806, 812, 874, 943, 973, 1003, 1036, 1040, 1065, 1194, 1210, 1239, 1243, 1264, 1309, 1311
Offset: 1

Views

Author

Bernard Schott, May 16 2019

Keywords

Comments

A240693 Union {this sequence} = A162862.
The corresponding prime numbers, (11111111111)_k, are Brazilian primes and belong to A085104 and A285017 (except 11).

Examples

			(11111111111)_20 = (20^11 - 1)/19 = 10778947368421 is prime, thus 20 is a term.
		

Crossrefs

Intersection of A064108 and A285017.
Similar to A182253 for k^2+k+1, A286094 for k^4+k^3+k^2+k+1, A288939 for k^6+k^5+k^4+k^3+k^2+k+1.

Programs

  • Magma
    [1] cat [n:n in [2..1500]|not IsPrime(n) and IsPrime(Floor((n^11-1)/(n-1)))]; // Marius A. Burtea, May 16 2019
    
  • Maple
    filter:= n -> not isprime(n) and isprime((n^11-1)/(n-1)) : select(filter, [$2..5000]);
  • Mathematica
    Select[Range@ 1320, And[! PrimeQ@ #, PrimeQ@ Total[#^Range[0, 10]]] &] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    isok(n) = !isprime(n) && isprime(polcyclo(11, n)); \\ Michel Marcus, May 19 2019
Showing 1-4 of 4 results.