A211856 Number of representations of n as a sum of products of distinct pairs of positive integers, considered to be equivalent when terms or factors are reordered.
1, 1, 1, 2, 3, 4, 6, 8, 10, 15, 20, 25, 34, 44, 56, 74, 94, 117, 151, 190, 236, 298, 370, 455, 567, 699, 853, 1050, 1282, 1555, 1898, 2299, 2770, 3351, 4035, 4837, 5811, 6952, 8288, 9898, 11782, 13978, 16600, 19660, 23225, 27451, 32366, 38074, 44799, 52609
Offset: 0
Keywords
Examples
a(0) = 1: 0 = the empty sum. a(1) = 1: 1 = 1*1. a(2) = 1: 2 = 1*2. a(3) = 2: 3 = 1*1 + 1*2 = 1*3. a(4) = 3: 4 = 2*2 = 1*1 + 1*3 = 1*4. a(5) = 4: 5 = 1*1 + 2*2 = 1*2 + 1*3 = 1*1 + 1*4 = 1*5. a(6) = 6: 6 = 1*1 + 1*5 = 1*1 + 1*2 + 1*3 = 1*2 + 1*4 = 1*2 + 2*2 = 1*6 = 2*3 a(7) = 8: 7 = 1*1 + 1*2 + 1*4 = 1*1 + 1*2 + 2*2 = 1*1 + 1*6 = 1*1 + 2*3 = 1*2 + 1*5 = 1*3 + 1*4 = 1*3 + 2*2 = 1*7.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; local c; c:= ceil(tau(i)/2); `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +add(b(n-i*j, i-1) *binomial(c, j), j=1..min(c, n/i)))) end: a:= n-> b(n, n): seq(a(n), n=0..60);
-
Mathematica
b[n_, i_] := b[n, i] = Module[{c}, c = Ceiling[DivisorSigma[0, i]/2]; If[n == 0, 1, If[i < 1, 0, b[n, i-1] + Sum[b[n-i*j, i-1] *Binomial[c, j], {j, 1, Min[c, n/i]}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 09 2014, after Alois P. Heinz *) nmax = 50; CoefficientList[Series[Product[Product[(1 + x^(k*j)), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2019 *)
Formula
G.f.: Product_{k>0} (1+x^k)^A038548(k). - Vaclav Kotesovec, Aug 19 2019
G.f.: Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))). - Vaclav Kotesovec, Aug 19 2019