A182269 Number of representations of n as a sum of products of pairs of positive integers, considered to be equivalent when terms or factors are reordered.
1, 1, 2, 3, 6, 8, 14, 19, 31, 43, 65, 88, 132, 177, 253, 340, 478, 633, 874, 1150, 1562, 2045, 2736, 3553, 4713, 6082, 7969, 10234, 13301, 16973, 21889, 27789, 35577, 44961, 57179, 71906, 90950, 113874, 143204, 178592, 223505, 277599, 345822, 427934, 530797
Offset: 0
Keywords
Examples
a(0) = 1: 0 = the empty sum. a(1) = 1: 1 = 1*1. a(2) = 2: 2 = 1*1 + 1*1 = 1*2. a(3) = 3: 3 = 1*1 + 1*1 + 1*1 = 1*1 + 1*2 = 1*3. a(4) = 6: 4 = 1*1 + 1*1 + 1*1 + 1*1 = 1*1 + 1*1 + 1*2 = 1*1 + 1*3 = 1*2 + 1*2 = 2*2 = 1*4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Transforms
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( d*ceil(tau(d)/2), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..60);
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*Ceiling[DivisorSigma[0, d]/2], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 09 2014, after Alois P. Heinz *) nmax = 50; CoefficientList[Series[Product[Product[1/(1 - x^(k*j)), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2019 *)
Formula
Euler transform of A038548.
G.f.: Product_{k>0} 1/(1-x^k)^A038548(k).
G.f.: Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))). - Vaclav Kotesovec, Aug 19 2019
Comments