cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A108479 Antidiagonal sums of number triangle A086645.

Original entry on oeis.org

1, 1, 2, 7, 17, 44, 117, 305, 798, 2091, 5473, 14328, 37513, 98209, 257114, 673135, 1762289, 4613732, 12078909, 31622993, 82790070, 216747219, 567451585, 1485607536, 3889371025, 10182505537, 26658145586, 69791931223, 182717648081
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,1,2,-1},{1,1,2,7},30] (* Harvey P. Dale, Jun 01 2021 *)

Formula

G.f.: (1 - x - x^2)/(1 - 2*x - x^2 - 2*x^3 + x^4).
a(n) = 2*(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = Sum_{k=0..floor(n/2)} C(2*(n-k), 2*k).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(2*(n-2*k), j) * C(2*k, j).
a(n) = A005252(2*n). - Seiichi Manyama, Aug 11 2024

A375278 Expansion of 1/((1 - x - x^3)^2 - 4*x^4).

Original entry on oeis.org

1, 2, 3, 6, 15, 34, 70, 146, 317, 690, 1480, 3162, 6788, 14608, 31395, 67392, 144701, 310854, 667793, 1434310, 3080542, 6616676, 14212315, 30526804, 65567936, 140832740, 302495240, 649730544, 1395554885, 2997508382, 6438345511, 13828920758, 29703127299
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x-x^3)^2-4*x^4))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-4*k+2, 2*k+1))/2;

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) + 2*a(n-4) - a(n-6).
a(n) = (1/2) * Sum_{k=0..floor(n/3)} binomial(2*n-4*k+2,2*k+1).

A115730 a(n) = a(n-3) + A001654(n-1) with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 2, 6, 16, 42, 110, 289, 756, 1980, 5184, 13572, 35532, 93025, 243542, 637602, 1669264, 4370190, 11441306, 29953729, 78419880, 205305912, 537497856, 1407187656, 3684065112, 9645007681, 25250957930, 66107866110
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

The a(n+1) represent the Ca2 and Ze4 sums of the Golden Triangle A180662. Furthermore the a(3*n) represent the Ze1 (terms doubled) and Ca3 sums of the Golden triangle. See A180662 for more information about these and other triangle sums.

Examples

			G.f. = x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 42*x^6 + 110*x^7 + 289*x^8 + ... - _Michael Somos_, Sep 05 2023
		

Crossrefs

Programs

  • Magma
    function A115730(n)
      if n lt 3 then return Floor(n/2);
      else return A115730(n-3) + Fibonacci(n-1)*Fibonacci(n);
      end if; return A115730;
    end function;
    [A115730(n): n in [0..40]]; // G. C. Greubel, Jan 20 2022
    
  • Maple
    nmax:=31: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):=a(n-3) + A001654(n-1) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,2,0,-2,-2,1}, {0,0,1,2,6,16}, 40] (* modified by G. C. Greubel, Jan 20 2022 *)
    a[ n_] := Floor[(2*Fibonacci[2*n+1] + Fibonacci[2*n+2] + 2)/20]; (* Michael Somos, Sep 05 2023 *)
  • PARI
    {a(n) = (2*fibonacci(2*n+1) + fibonacci(2*n+2) + 2)\20}; /* Michael Somos, Sep 05 2023 */
  • Sage
    U=chebyshev_U
    def A115730(n): return (1/60)*((-1)^n*(6 - 5*U(n, 1/2) + 10*U(n-1, 1/2)) - (10 - 9*U(n, 3/2) + 6*U(n-1, 3/2)))
    [A115730(n) for n in (0..40)] # G. C. Greubel, Jan 20 2022
    

Formula

a(n) = -floor(g(Fibonacci(n+1))) where g(x) = (1-x^2)^2/(-4*x^2).
G.f.: x^2/( (1-x)*(1+x)*(1+x+x^2)*(1-3*x+x^2) ). - R. J. Mathar, Jun 20 2015
a(n) - a(n-2) = A182890(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (1/60)*((-1)^n*(6 - 5*ChebyshevU(n, 1/2) + 10*ChebyshevU(n-1, 1/2)) - (10 - 9*ChebyshevU(n, 3/2) + 6*ChebyshevU(n-1, 3/2))). - G. C. Greubel, Jan 20 2022
a(n) = floor((2*Fibonacci(2*n+1) + Fibonacci(2*n+2) + 2)/20). - Michael Somos, Sep 05 2023

Extensions

Corrected and information added by Johannes W. Meijer, Sep 22 2010
Edited by Editors-in-Chief. - N. J. A. Sloane, Jun 20 2015

A376723 Expansion of 1/((1 - x^2 - x^3)^2 - 4*x^5).

Original entry on oeis.org

1, 0, 2, 2, 3, 10, 7, 28, 33, 64, 132, 170, 408, 578, 1119, 2002, 3194, 6310, 10021, 18666, 32353, 55450, 101443, 170672, 308744, 534820, 935936, 1663892, 2872669, 5111652, 8898082, 15641802, 27538647, 48049562, 84813451, 148219128, 260572901, 457451088
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x^2-x^3)^2-4*x^5))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k+2, 2*n-4*k+1))/2;

Formula

a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6).
a(n) = (1/2) * Sum_{k=0..floor(n/2)} binomial(2*k+2,2*n-4*k+1).

A376724 Expansion of 1/((1 - x^3 - x^4)^2 - 4*x^7).

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 3, 10, 3, 4, 28, 28, 9, 60, 126, 66, 115, 396, 403, 292, 1007, 1724, 1281, 2366, 5736, 6128, 6468, 16202, 24888, 23664, 43055, 85158, 97156, 124044, 257474, 374538, 421785, 740324, 1294129, 1577756, 2217676, 4085272, 5813587, 7319572, 12370630
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/((1-x^3-x^4)^2-4*x^7))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k+2, 2*n-6*k+1))/2;

Formula

a(n) = 2*a(n-3) + 2*a(n-4) - a(n-6) + 2*a(n-7) - a(n-8).
a(n) = (1/2) * Sum_{k=0..floor(n/3)} binomial(2*k+2,2*n-6*k+1).

A375255 Expansion of 1/(1 - 2*x + 3*x^2 + 2*x^3 + x^4).

Original entry on oeis.org

1, 2, 1, -6, -20, -26, 19, 162, 339, 180, -1000, -3380, -4459, 3042, 27221, 57614, 31940, -166446, -571161, -764478, 485479, 4573160, 9790000, 5654040, -27693719, -96502718, -131022359, 77196834, 768159900, 1663276734, 998702459, -4605941918, -16302704581
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-2*x+3*x^2+2*x^3+x^4))
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-2*k+2, 2*k+1))/2;

Formula

a(n) = 2*a(n-1) - 3*a(n-2) - 2*a(n-3) - a(n-4).
a(n) = (1/2) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-2*k+2,2*k+1).

A375283 Expansion of 1/((1 - x - x^4)^2 - 4*x^5).

Original entry on oeis.org

1, 2, 3, 4, 7, 16, 35, 68, 122, 220, 417, 816, 1588, 3028, 5707, 10784, 20547, 39322, 75150, 143144, 272212, 517990, 987005, 1881824, 3586808, 6832874, 13013780, 24789200, 47229672, 89991518, 171459667, 326651952, 622295173, 1185547900, 2258689217, 4303264572
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x-x^4)^2-4*x^5))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-6*k+2, 2*k+1))/2;

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) + 2*a(n-5) - a(n-8).
a(n) = (1/2) * Sum_{k=0..floor(n/4)} binomial(2*n-6*k+2,2*k+1).

A376716 Expansion of (1 - x + x^2)/((1 - x + x^2)^2 - 4*x^2).

Original entry on oeis.org

1, 1, 4, 11, 27, 72, 189, 493, 1292, 3383, 8855, 23184, 60697, 158905, 416020, 1089155, 2851443, 7465176, 19544085, 51167077, 133957148, 350704367, 918155951, 2403763488, 6293134513, 16475640049, 43133785636, 112925716859, 295643364939, 774004377960
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-x+x^2)/((1-x+x^2)^2-4*x^2))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-2*k+1, 2*k));

Formula

a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-2*k+1,2*k).

A376725 Expansion of 1/((1 - x^4 - x^5)^2 - 4*x^9).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 0, 0, 3, 10, 3, 0, 4, 28, 28, 4, 5, 60, 126, 60, 11, 110, 396, 396, 117, 188, 1001, 1716, 1009, 462, 2191, 5720, 5729, 2592, 4564, 15920, 24320, 16482, 12036, 39168, 84000, 84750, 51927, 93024, 249292, 353738, 269962, 258324, 666932, 1250142
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/((1-x^4-x^5)^2-4*x^9))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*k+2, 2*n-8*k+1))/2;

Formula

a(n) = 2*a(n-4) + 2*a(n-5) - a(n-8) + 2*a(n-9) - a(n-10).
a(n) = (1/2) * Sum_{k=0..floor(n/4)} binomial(2*k+2,2*n-8*k+1).

A182888 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,0)-steps at level 0. These are paths of weight n that start at (0,0) , end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 8, 7, 6, 4, 0, 1, 17, 20, 12, 8, 5, 0, 1, 38, 44, 36, 18, 10, 6, 0, 1, 89, 104, 82, 56, 25, 12, 7, 0, 1, 206, 253, 204, 132, 80, 33, 14, 8, 0, 1, 485, 604, 513, 344, 195, 108, 42, 16, 9, 0, 1, 1152, 1466, 1262, 891, 530, 272, 140, 52, 18, 10, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2010

Keywords

Examples

			T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely hH and Hh, have exactly two (1,0)-steps at level 0.
Triangle starts:
   1;
   0,   1;
   1,   0,  1;
   2,   2,  0,  1;
   3,   4,  3,  0,  1;
   8,   7,  6,  4,  0,  1;
  17,  20, 12,  8,  5,  0, 1;
  38,  44, 36, 18, 10,  6, 0, 1;
  89, 104, 82, 56, 25, 12, 7, 0, 1;
  ...
		

Crossrefs

Row sums give A051286.
Column k=0 gives A182889.
Cf. A182890.

Programs

  • Maple
    G:=1/(z-t*z+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form

Formula

G.f.: G(t,z) = 1/( z-tz+sqrt((1+z+z^2)(1-3z+z^2)) ).
Sum_{k=0..n} k*T(n,k) = A182890(n).
Showing 1-10 of 13 results. Next