A183010 a(n) = 24*n - 1.
-1, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 263, 287, 311, 335, 359, 383, 407, 431, 455, 479, 503, 527, 551, 575, 599, 623, 647, 671, 695, 719, 743, 767, 791, 815, 839, 863, 887, 911, 935, 959, 983, 1007, 1031, 1055, 1079, 1103, 1127, 1151, 1175, 1199
Offset: 0
Examples
G.f. = -1 + 23*x + 47*x^2 + 71*x^3 + 95*x^4 + 119*x^5 + 143*x^6 + 167*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
- A. Dabholkar, S. Murthy, and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074 [hep-th], 2012-2014, see p. 46.
- H. Gupta, Congruent properties of sigma(n), Math. Student 13 (1945) 25-29.
- E. Larson and L. Rolen, Integrality properties of the CM-values of certain weak Maass forms, arXiv:1107.4114 [math.NT], 2011.
- K. Ono, Congruences for the Andrews spt-function, (see 2.1 Producing modular forms)
- W. Sierpinski, Elementary Theory of numbers, Monografie Mathematyczne, vol. 42 (1964) chapt 4, p. 168.
- Leo Tavares, Illustration: Star Pairs
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Magma
[24*n-1: n in [0..50]]; // G. C. Greubel, Aug 14 2018
-
Mathematica
Range[23, 2000, 24] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *) (24*Range[0,50])-1 (* Harvey P. Dale, Mar 28 2015 *)
-
PARI
a(n)=24*n-1 \\ Charles R Greathouse IV, Jun 14 2011
Formula
a(n) = A008606(n) - 1.
a(1)=23, a(2)=47, a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 23 2011
E.g.f.: (24*x-1)*exp(x). - G. C. Greubel, Aug 14 2018
G.f.: (-1 + 25*x)/(1-x)^2. - Wolfdieter Lang, Dec 10 2021
a(n) = 2*A008594(n) - 1. - Leo Tavares, Jun 06 2023
Comments