A183204 Central terms of triangle A181544.
1, 4, 48, 760, 13840, 273504, 5703096, 123519792, 2751843600, 62659854400, 1451780950048, 34116354472512, 811208174862904, 19481055861877120, 471822589361293680, 11511531876280913760, 282665135367572129040
Offset: 0
Examples
Triangle A181544 begins: (1); 1, (4), 1; 1, 20, (48), 20, 1; 1, 54, 405, (760), 405, 54, 1; 1, 112, 1828, 8464, (13840), 8464, 1828, 112, 1; ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..702 (terms 0..499 from Jason Kimberley)
- S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J., December 2012, Volume 29, Issue 1, pp 163-183.
- Shaun Cooper, Jesús Guillera, Armin Straub, and Wadim Zudilin, Crouching AGM, Hidden Modularity, arXiv:1604.01106 [math.NT], 5-April-2016.
- Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s7 p. 3.
- Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
- Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.
- Wadim Zudilin, A generating function of the squares of Legendre polynomials, preprint arXiv:1210.2493 [math.CA], 2012.
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Magma
P
:=PolynomialRing(Integers()); C:=Binomial; A183204:=func ; // or directly: A183204:=func ; [A183204(n):n in[0..16]]; // Jason Kimberley, Oct 29 2012 -
Mathematica
Table[Sum[Binomial[n,j]^2 * Binomial[2*j,n] * Binomial[j+n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 05 2015 *)
-
PARI
{a(n)=polcoeff((1-x)^(3*n+1)*sum(j=0, 2*n, binomial(n+j, j)^3*x^j), n)}
Formula
a(n) = [x^n] (1-x)^(3n+1) * Sum_{k>=0} C(n+k-1,k)^3*x^k.
a(n) = Sum_{j = 0..n} C(n,j)^2 * C(2*j,n) * C(j+n,j). [Formula of Wadim Zudilin provided by Jason Kimberley, Nov 06 2012]
1/Pi = sqrt(7) Sum_{n>=0} (-1)^n a(n) (11895n + 1286)/22^(3n+3). [Cooper, equation (41)] - Jason Kimberley, Nov 06 2012
G.f.: sqrt((1-13*x+(1-26*x-27*x^2)^(1/2))/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2)))*hypergeom([1/12,5/12],[1],13824*x^7/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2))^3)^2. - Mark van Hoeij, May 07 2013
a(n) ~ 3^(3*n+3/2) / (4 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Apr 05 2015
G.f. A(x) satisfies 1/(1+4*x)^2 * A( x/(1+4*x)^3 ) = 1/(1+2*x)^2 * A( x^2/(1+2*x)^3 ) [see Cooper, Guillera, Straub, Zudilin]. - Joerg Arndt, Apr 08 2016
a(n) = (-1)^n*binomial(3n+1,n)* 4F3({-n,n+1,n+1,n+1};{1,1,2(n+1)}; 1). - M. Lawrence Glasser, May 15 2016
Conjecture D-finite with recurrence: n^3*a(n) - (2*n-1)*(13*n^2-13*n+4)*a(n-1) - 3*(n-1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, May 15 2016
0 = (-x^2+26*x^3+27*x^4)*y''' + (-3*x+117*x^2+162*x^3)*y'' + (-1+86*x+186*x^2)*y' + (4+24*x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Jeremy Tan, Mar 14 2024: (Start)
The conjectured D-finite recurrence can be proved by Zeilberger's algorithm.
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,n) * binomial(2*n-k,n) = [(w*x*y*z)^n] ((w+y)*(x+z)*(y+z)*(w+x+y+z))^n. (End)
a(n) = Sum_{0 <= j, k <= n} binomial(n, k)^2 * binomial(n, j)^2 * binomial(k+j, n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(n, k). - Peter Bala, Jul 08 2024
From Peter Bala, Sep 18 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n+k, k)^3*binomial(3*n+1, n-k). Cf A245086.
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*A143007(n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). (End)
Comments