cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034785 a(n) = 2^(n-th prime).

Original entry on oeis.org

4, 8, 32, 128, 2048, 8192, 131072, 524288, 8388608, 536870912, 2147483648, 137438953472, 2199023255552, 8796093022208, 140737488355328, 9007199254740992, 576460752303423488, 2305843009213693952
Offset: 1

Views

Author

Keywords

Comments

These are the "outputs" in Conway's PRIMEGAME (see A007542). - Alonso del Arte, Jan 03 2011
Multiplicative encoding of the n-th prime. - Daniel Forgues, Feb 26 2017

Examples

			a(4) = 128 because the fourth prime number is 7 and 2^7 = 128.
		

Crossrefs

Cf. A000040, A000430, A051006, A073718 (2^(n-th composite)), A074736.

Programs

Formula

From Amiram Eldar, Aug 11 2020: (Start)
a(n) = 2^A000040(n).
Sum_{n>=1} 1/a(n) = A051006. (End)
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A184083.
Product_{n>=1} (1 - 1/a(n)) = A184082. (End)

Extensions

More terms from James Sellers, Feb 04 2000

A184084 Decimal expansion of product_{p=primes} (1-1/(2^p+1)).

Original entry on oeis.org

6, 8, 3, 7, 9, 2, 8, 4, 2, 3, 5, 9, 4, 7, 4, 3, 6, 8, 9, 9, 4, 3, 6, 3, 6, 4, 3, 4, 1, 0, 7, 6, 3, 4, 4, 4, 3, 6, 8, 2, 2, 1, 0, 8, 7, 5, 8, 1, 8, 1, 7, 3, 5, 2, 6, 2, 9, 4, 7, 1, 2, 9, 8, 1, 0, 5, 5, 9, 9, 0, 4, 2, 3, 5, 5, 6, 5, 5, 7, 7, 7
Offset: 0

Views

Author

R. J. Mathar, Jan 09 2011

Keywords

Comments

Inverse of the constant A184083.

Examples

			(1-1/5) *(1-1/9) *(1-1/33) * (1-1/129) *(1-1/2049)* ... = 0.6837928423594743689943636...
		

Programs

  • Mathematica
    RealDigits[Times@@Table[1-1/(2^p+1),{p,Prime[Range[1000]]}],10,100][[1]] (* Harvey P. Dale, Jul 23 2024 *)

Formula

Equals product_{p in A000040} (1-1/(2^p+1)) = 1/ product_p (1+2^(-p)) = product_{n>=1} (1-1/A098640(n)).

A293258 Decimal expansion of product of 1 - 4^-p over all primes p.

Original entry on oeis.org

9, 2, 1, 8, 9, 3, 8, 3, 5, 2, 9, 6, 9, 3, 1, 8, 5, 9, 1, 9, 4, 6, 7, 0, 3, 0, 2, 7, 9, 9, 8, 0, 7, 1, 8, 6, 7, 3, 2, 2, 0, 5, 4, 7, 8, 7, 3, 8, 8, 6, 2, 6, 7, 4, 9, 7, 6, 2, 3, 0, 6, 6, 0, 3, 9, 3, 8, 6, 4, 4, 5, 3, 1, 2, 2, 8, 6, 0, 8, 9, 3, 7, 0, 9, 3, 8, 7, 5, 6, 0, 5, 5, 6, 0, 8, 5, 5, 3, 9, 4, 8, 7, 0, 2, 6
Offset: 0

Views

Author

Keywords

Comments

Knopfmacher proves that prime(n+1) = floor(1 - log(1 - A/P)) where A is this constant and P is the product (1 - 4^-2)(1 - 4^-3)(1 - 4^-5)...(1 - 4^-prime(n)).

Examples

			0.921893835296931859194670302799807186732205478738862674976230660393864453122...
		

Crossrefs

Programs

  • PARI
    prodeuler(p=2, bitprecision(1.)/2+2, 1-4.^-p)

Formula

Equals A184082 * A184083 = A184082 / A184084. - Amiram Eldar, Nov 16 2021
Showing 1-3 of 3 results.