A184389 a(n) = Sum_{k=1..tau(n)} k, where tau is the number of divisors of n (A000005).
1, 3, 3, 6, 3, 10, 3, 10, 6, 10, 3, 21, 3, 10, 10, 15, 3, 21, 3, 21, 10, 10, 3, 36, 6, 10, 10, 21, 3, 36, 3, 21, 10, 10, 10, 45, 3, 10, 10, 36, 3, 36, 3, 21, 21, 10, 3, 55, 6, 21, 10, 21, 3, 36, 10, 36, 10, 10, 3, 78, 3, 10, 21, 28, 10, 36, 3, 21, 10, 36, 3, 78
Offset: 1
Keywords
Examples
For n = 4; tau(4) = 3; a(4) = 1+2+3 = 6.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Haskell
a184389 = a000217 . a000005' -- Reinhard Zumkeller, Sep 08 2015
-
Maple
A184389 := proc(n) A000217(numtheory[tau](n)) ; end proc: # R. J. Mathar, Oct 04 2014
-
Mathematica
((#+1)#)/2&/@DivisorSigma[0,Range[80]] (* Harvey P. Dale, Feb 27 2013 *)
-
PARI
a(n) = my(nd=numdiv(n)); nd*(nd+1)/2; \\ Michel Marcus, Jun 25 2016
Formula
Dirichlet g.f.: zeta(s)^2*(zeta(s)^2 + zeta(2*s))/(2*zeta(2*s)). - Ilya Gutkovskiy, Jun 25 2016
a(n) = Sum_{d1|(2*n), d2|(2*n), d1 and d2 even, d1<=d2} 1. - Wesley Ivan Hurt, Aug 24 2020
a(n) = Sum_{d|n} A018892(d). - Daniel Suteu, Jan 08 2021
a(n) = Sum_{d|n} A135539(n,d). - Ridouane Oudra, May 29 2025
Comments