A069129 Centered 16-gonal numbers.
1, 17, 49, 97, 161, 241, 337, 449, 577, 721, 881, 1057, 1249, 1457, 1681, 1921, 2177, 2449, 2737, 3041, 3361, 3697, 4049, 4417, 4801, 5201, 5617, 6049, 6497, 6961, 7441, 7937, 8449, 8977, 9521, 10081, 10657, 11249, 11857, 12481, 13121, 13777, 14449, 15137, 15841
Offset: 1
Examples
a(5) = 161 because 8*5^2 - 8*5 + 1 = 200 - 40 + 1 = 161.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Leo Tavares, Illustration: Octagonal Stars.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[8*n^2-8*n+1: n in [0..50]]; // Vincenzo Librandi, Feb 05 2013
-
Mathematica
FoldList[#1 + #2 &, 1, 16 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) Rest[CoefficientList[Series[-x(1+14x+x^2)/(x-1)^3,{x,0,50}],x]] (* Harvey P. Dale, Apr 22 2011 *)
-
PARI
a(n)=8*n^2-8*n+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = 8*n^2 - 8*n + 1.
a(n) = A035008(n-1) + 1. - Omar E. Pol, Apr 26 2008
a(n) = 16*n + a(n-1) - 16 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+14*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
E.g.f.: (8*x^2 + 1)*exp(x). - G. C. Greubel, Jul 18 2017
a(n) = A056220(2n-1). - Bruce J. Nicholson, Aug 31 2017
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(2))) / (4*sqrt(2)). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} a(n)/n! = 9*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 9/e - 1. (End)
Product_{n>=2} (a(n) - 1) / (a(n) + 1) = Pi/4. - Dimitris Valianatos, Jun 27 2020
Comments