A275543 A081585 and A069129 interleaved.
1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
Offset: 0
Examples
a(1) = A275496(1) = 1. a(5) = A275496(5)/25 = 1225/25 = 49. a(7) = A275496(7)/49 = 4753/49 = 97. a(12) = A275496(12)/144 = 41616/144 = 289.
Links
- Daniel Poveda Parrilla, Table of n, a(n) for n = 0..500000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(1 - x + 7 x^2 + x^3)/((1 - x)^3 (1 + x)), {x, 0, 48}], x] (* or as defined *) Riffle[LinearRecurrence[{3, -3, 1}, {1, 9, 33}, #], FoldList[#1 + #2 &, 1, 16 Range@ #]] &@ 25 (* Michael De Vlieger, Aug 01 2016, after Vincenzo Librandi at A081585 and Robert G. Wilson v at A069129 *)
-
PARI
a(n)=(-1)^n + 2*n^2 \\ Charles R Greathouse IV, Aug 03 2016
-
PARI
Vec((1-x+7*x^2+x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Aug 21 2016
Formula
a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022
Comments