cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186021 a(n) = Bell(n)*(2 - 0^n).

Original entry on oeis.org

1, 2, 4, 10, 30, 104, 406, 1754, 8280, 42294, 231950, 1357140, 8427194, 55288874, 381798644, 2765917090, 20960284294, 165729739608, 1364153612318, 11665484410114, 103448316470744, 949739632313502, 9013431476894646, 88304011710168692, 891917738589610578, 9277180664459998706
Offset: 0

Views

Author

Paul Barry, Feb 10 2011

Keywords

Comments

a(n) is the number of collections of subsets of {1,2,...,n-1} that are pairwise disjoint. a(n+1) = 2*Sum_{j=0..n} C(n,j)*Bell(j). For example a(3)=10 because we have: {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{},{1}}, {{},{2}}, {{},{1,2}}, {{1},{2}}, {{},{1},{2}}. - Geoffrey Critzer, Aug 28 2014
a(n) is the number of collections of subsets of [n] that are pairwise disjoint and cover [n], with [0] = {}. For disjoint collections of nonempty subsets see A000110. For arbitrary collections of subsets see A000371. For arbitrary collections of nonempty subsets see A003465. - Manfred Boergens, May 02 2024 and Apr 09 2025

Examples

			a(4) = A060719(3) + 1 = 29 + 1 = 30.
		

Crossrefs

Row sums of A186020 and A256894.
Main diagonal of A271466 (shifted) and A381682.

Programs

  • Magma
    [Bell(n)*(2-0^n): n in [0..50]]; // Vincenzo Librandi, Apr 06 2011
    
  • Maple
    A186021List := proc(m) local A, P, n; A := [1,2]; P := [2];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([P[-1], op(P)]);
    A := [op(A), P[-1]] od; A end: A186021List(26); # Peter Luschny, Mar 24 2022
  • Mathematica
    Prepend[Table[2 Sum[Binomial[n, j] BellB[j], {j, 0, n}], {n, 0, 25}], 1] (* Geoffrey Critzer, Aug 28 2014 *)
    With[{nmax = 50}, CoefficientList[Series[2*Exp[Exp[x] - 1] - 1, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 24 2017 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(2*exp(exp(x) - 1) -1)) \\ G. C. Greubel, Jul 24 2017
  • Python
    from itertools import accumulate
    def A186021_list(size):
        if size < 1: return []
        L, accu = [1], [2]
        for _ in range(size-1):
            accu = list(accumulate([accu[-1]] + accu))
            L.append(accu[0])
        return L
    print(A186021_list(26)) # Peter Luschny, Apr 25 2016
    

Formula

E.g.f.: 2*exp(exp(x)-1)-1. - Paul Barry, Apr 06 2011
a(n) = A000110(n)*A040000(n).
a(n+1) = 1 + Sum_{k=0..n} C(n,k)*a(k). - Franklin T. Adams-Watters, Oct 02 2011
From Sergei N. Gladkovskii, Nov 11 2012 to Mar 29 2013: (Start)
Continued fractions:
G.f.: A(x)= 1 + 2*x/(G(0)-x) where G(k)= 1 - x*(k+1)/(1 - x/G(k+1)).
G.f.: G(0)-1 where G(k) = 1-(x*k+1)/(x*k - 1 - x*(x*k - 1)/(x + (x*k + 1)/G(k+1))).
G.f.: (G(0)-2)/x - 1 where G(k) = 1 + 1/(1 - x/(x + (1 - x*k)/G(k+1))).
G.f.: (S-2)/x - 1 where S = 2*Sum_{k>=0} x^k/Product_{n=0..k-1}(1 - n*x).
G.f.: 1/(1-x) - x/(G(0)-x^2+x) where G(k) =x^2 + x - 1 + k*(2*x-x^2) - x^2*k^2 + x*(x*k - 1)*(x*k + 2*x - 1)^2/G(k+1).
E.g.f.: E(0) - 1 where E(k) = 1 + 1/(1 - 1/(1 + (k+1)/x*Bell(k)/Bell(k+1)/E(k+1))). (End)
a(n) = A060719(n-1) + 1, and the inverse binomial transform of A060719. - Gary W. Adamson, May 20 2013
G.f. A(x) satisfies: A(x) = 1 + (x/(1 - x)) * (1 + A(x/(1 - x))). - Ilya Gutkovskiy, Jun 30 2020