A186099 Sum of divisors of n congruent to 1 or 5 mod 6.
1, 1, 1, 1, 6, 1, 8, 1, 1, 6, 12, 1, 14, 8, 6, 1, 18, 1, 20, 6, 8, 12, 24, 1, 31, 14, 1, 8, 30, 6, 32, 1, 12, 18, 48, 1, 38, 20, 14, 6, 42, 8, 44, 12, 6, 24, 48, 1, 57, 31, 18, 14, 54, 1, 72, 8, 20, 30, 60, 6, 62, 32, 8, 1, 84, 12, 68, 18, 24, 48, 72, 1, 74, 38, 31, 20, 96, 14, 80, 6
Offset: 1
Examples
G.f.: x + x^2 + x^3 + x^4 + 6*x^5 + x^6 + 8*x^7 + x^8 + x^9 + 6*x^10 + 12*x^11 +... L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 +... where exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 +...+ A003105(n)*x^n +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Total[Select[Divisors[n],MemberQ[{1,5},Mod[#,6]]&]],{n,0,100}] (* Harvey P. Dale, Feb 24 2011 *) a[ n_] := If[ n < 1, 0, DivisorSum[n, If[ 1 == GCD[#, 6], #, 0] &]]; (* Michael Somos, Jun 27 2017 *) a[ n_] := If[n < 1, 0, Times @@ (Which[# < 5, 1, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[n])]; (* Michael Somos, Jun 27 2017 *)
-
PARI
{a(n) = sumdiv( n, d, d * (1 == gcd(d, 6) ))};
-
PARI
{a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - (p>3) * p * X)) [n]};
-
PARI
a(n)=sigma(n/2^valuation(n,2)/3^valuation(n,3)) \\ Charles R Greathouse IV, Dec 07 2011
-
PARI
{S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))} {a(n)=n*polcoeff(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n),n)} for(n=1,80,print1(a(n),", ")) /* Paul D. Hanna, Feb 17 2013 */
Formula
Expansion of (1 + a(x)^2 - 2*a(x^2)^2) / 12 in powers of x where a() is a cubic AGM function.
a(n) is multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
Equals the logarithmic derivative of A003105, where A003105(n) = number of partitions of n into parts 6*n+1 or 6*n-1. - Paul D. Hanna, Feb 17 2013
L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} S(n,x)*x^n/n where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
G.f.: Sum_{n >= 1} x^n*(x^(10*n) + 5*x^(6*n) + 5*x^(4*n) + 1)/(1 - x^(6*n))^2. - Peter Bala, Dec 19 2021
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2/2^s)*(1-3/3^s).
Sum_{k=1..n} a(k) ~ c*n^2, where c = Pi^2/36 = 0.274155... (A353908). (End)
Comments