cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A003105 Schur's 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30, 34, 38, 42, 47, 53, 60, 67, 74, 82, 91, 102, 114, 126, 139, 153, 169, 187, 207, 228, 250, 274, 301, 331, 364, 399, 436, 476, 520, 569, 622, 679, 739, 804, 875, 953, 1038, 1128, 1224, 1327
Offset: 0

Views

Author

Keywords

Comments

There are many (at least 8) equivalent definitions of this sequence (besides the comments below, see also Schur, Alladi, Andrews). - N. J. A. Sloane, Jun 17 2011
Coefficients of replicable function number 72e. - N. J. A. Sloane, Jun 10 2015
Also number of partitions of n into odd parts in which no part appears more than twice, cf. A070048 and A096938. - Vladeta Jovovic, Jan 18 2005
Also number of partitions of n into distinct parts congruent to 1 or 2 modulo 3. (Follows from second g.f.) - N. Sato, Jul 20 2005
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A262928 and A261612. - Vaclav Kotesovec, Jan 13 2017
Convolution of A109702 and A109701. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
T72e = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 2*q^71 + 3*q^83 + ...
The logarithm of the g.f. begins:
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 + x^9/9 + 6*x^10/10 + 12*x^11/11 + x^12/12 + ... + A186099(n)*x^n/n + ... . - _Paul D. Hanna_, Feb 17 2013
		

References

  • K. Alladi, Refinements of Rogers-Ramanujan type identities. In Special Functions, q-Series and Related Topics (Toronto, ON, 1995), 1-35, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  • G. E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-Series From a Contemporary Perspective (South Hadley, MA, 1998), 45-56, Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • I. Schur, Zur Additiven Zahlentheorie, Ges. Abh., Vol. 2, Springer, pp. 43-50.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003105 n = p 1 n where
       p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+2) m
       q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    with(combinat);
    A:=proc(n) local i, j, t3, t2, t1;
        t2:=0;
        t1:=firstpart(n);
        for j from 1 to numbpart(n)+2 do
            t3:=1;
            for i from 1 to nops(t1) do
                if (t1[i] mod 6) <> 1 and (t1[i] mod 6) <> 5 then t3:=0; fi;
            od;
            if t3=1 then t2:=t2+1; fi;
            if nops(t1) = 1 then RETURN(t2); fi;
            t1:=nextpart(t1);
        od;
    end;
    # brute-force Maple program from N. J. A. Sloane, Jun 17 2011
  • Mathematica
    max = 63; f[x_] := 1/Product[1 - x^k + x^(2k), {k, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 01 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] / QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] != 0, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 63; kmax = nmax/6;
    s = Flatten[{Range[0, kmax]*6 + 1}~Join~{Range[kmax]*6 - 1}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 09 2005 */
    
  • PARI
    {S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))}
    {a(n)=polcoeff(exp(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n)),n)}
    for(n=0,60,print1(a(n),", "))
    /* Paul D. Hanna, Feb 17 2013 */
    

Formula

G.f.: 1/Product_{k>=0} (1-x^(6*k+1))*(1-x^(6*k+5)) = Product_{k>=0} (1+x^(3*k+1))*(1+x^(3*k+2)) = 1/Product_{k>=0} (1-x^k+x^(2*k)). - Vladeta Jovovic, Jun 08 2003
Expansion of chi(-x^3) / chi(-x) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 04 2012
Expansion of f(x, x^2) / f(-x^3) = f(-x^6) / f(-x, -x^5) in powers of x where f() is Ramanujan theta function. - Michael Somos, Jul 05 2014
Expansion of q^(1/12) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jan 09 2005
Euler transform of period 6 sequence [1, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jan 09 2005
Given g.f. A(x), then B(q) = (A(q^12) / q)^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 + (1 - u^3) * v^3 + 6*u^2*v^2 + (u^4 - u)*v + u^3. - Michael Somos, Jan 09 2005
The logarithmic derivative equals A186099. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} A186099(n) * x^n/n ) where A186099(n) = sum of divisors of n congruent to 1 or 5 mod 6. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} S(n,x) * x^n/n ) where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) ~ Pi*sqrt(2) / sqrt(3*(12*n-1)) * BesselI(1, Pi*sqrt(12*n-1) / (3*sqrt(6))) ~ exp(Pi*sqrt(2*n)/3) / (2^(5/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/36)/sqrt(2*n) + (5 - 135/(4*Pi^2) + Pi^2/81)/(64*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
a(n) = (1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

Extensions

More terms from Vladeta Jovovic, Jun 08 2003

A109389 Expansion of q^(-1/12)eta(q)eta(q^6)/(eta(q^2)eta(q^3)) in powers of q.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 2, -2, 1, 0, 1, -2, 3, -3, 2, -1, 1, -3, 5, -5, 3, -1, 2, -5, 7, -7, 5, -3, 3, -7, 11, -11, 7, -4, 6, -11, 15, -15, 11, -7, 8, -15, 22, -22, 15, -10, 13, -22, 30, -30, 23, -16, 18, -30, 42, -42, 31, -22, 27, -43, 56, -56, 44, -33, 37, -57, 77, -77, 59, -45, 53, -79, 101, -101, 82, -64
Offset: 0

Views

Author

Michael Somos, Jun 26 2005

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			q - q^13 - q^61 + q^73 - q^85 + q^97 - q^133 + 2*q^145 - 2*q^157 + q^169 + ...
		

Crossrefs

Cf. A098884.
Cf. A081360 (m=2), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    QP = QPochhammer; s = QP[q]*(QP[q^6]/(QP[q^2]*QP[q^3])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^6+A)/eta(x^2+A)/eta(x^3+A), n))}

Formula

Euler transform of period 6 sequence [ -1, 0, 0, 0, -1, 0, ...].
G.f.: 1/(Product_{k>0} (1+x^(2k-1)+x^(4k-2))) = Product_{k>0} (1-x^(6k-1))(1-x^(6k-5)) = Product_{k>0} (1-x^k+x^(2k)) (where 1-x+x^2 is 6th cyclotomic polynomial).
Given g.f. A(x), then B(x)=x*A(x^12) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)=(v^2+u^4)*(v^2+w^4)-2*v^4*(1-v*u^2*w^2).
Expansion of G(x^6) * H(x) - x * G(x) * H(x^6) where G(), H() are Rogers-Ramanujan functions.
a(n) = (-1)^n*A098884(n).
a(n) ~ (-1)^n * exp(sqrt(n)*Pi/3) / (2*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
a(n) = -(1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 26 2017

A385045 The sum of the unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 8, 1, 1, 6, 12, 1, 14, 8, 6, 1, 18, 1, 20, 6, 8, 12, 24, 1, 26, 14, 1, 8, 30, 6, 32, 1, 12, 18, 48, 1, 38, 20, 14, 6, 42, 8, 44, 12, 6, 24, 48, 1, 50, 26, 18, 14, 54, 1, 72, 8, 20, 30, 60, 6, 62, 32, 8, 1, 84, 12, 68, 18, 24, 48, 72, 1, 74, 38
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A186099 at n = 25; a(25) = 26, while A186099(25) = 31.
The number of these divisors is A385044(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A186099.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), this sequence (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] < 5, 1, f[i, 1]^f[i, 2] + 1));}

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and p^e + 1 if p >= 5.
a(n) = A034448(n)/A385046(n).
a(n) <= A034448(n), with equality if and only if n is 5-rough.
a(n) <= A186099(n).
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-1)) * ((1-1/2^(s-1))/(1-1/2^(2*s-1))) * ((1-1/3^(s-1))/(1-1/3^(2*s-1))).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/(91*zeta(3)) = 0.270679... .

A284150 Sum_{d|n, d==1 or 4 mod 5} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 5, 10, 1, 12, 11, 1, 15, 1, 21, 1, 16, 20, 5, 22, 12, 1, 35, 1, 27, 10, 19, 30, 7, 32, 21, 12, 35, 1, 56, 1, 20, 40, 5, 42, 42, 1, 60, 10, 47, 1, 51, 50, 1, 52, 31, 1, 70, 12, 75, 20, 30, 60, 11, 62, 32, 31, 85, 1, 84, 1, 39, 70, 15, 72, 80, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), this sequence (k=5), A186099 (k=6), A284151 (k=7).

Programs

  • Maple
    A284150 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,5) in {1,4} then
                a := a+d ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Mar 21 2017
  • Mathematica
    Table[Sum[If[Mod[d, 5] == 1 || Mod[d,5]==4, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(d%5==1 || d%5 ==4, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==1 or d%5 == 4]) # Indranil Ghosh, Mar 21 2017

Formula

a(n) = A284097(n) + A284103(n). - Seiichi Manyama, Mar 24 2017

A385006 The sum of the biquadratefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 15, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 15, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A365682 and A366992 at n = 32.
The number of these divisors is A252505(n), and the largest of them is A058035(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), A385005 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^Min[e+1, 4] - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^min(e+1, 4) - 1)/(p - 1));}

Formula

Multiplicative with a(p^e) = (p^min(e+1, 4) - 1)/(p - 1).
In general, the sum of the k-free (numbers that are not divisible by a k-th power larger than 1) divisors of n is multiplicative with a(p^e) = (p^min(e+1, k) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(s-1) /zeta(4*s-4).
In general, the sum of the k-free divisors of n has Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(k*s-k).
Sum_{k=1..n} a(k) ~ (15/(2*Pi^2)) * n^2.
In general, the sum of the k-free divisors of n has an average order (Pi^2/(12*zeta(k))) * n^2.

A385138 The sum of divisors d of n such that n/d is a 5-rough number (A007310).

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 8, 8, 9, 12, 12, 12, 14, 16, 18, 16, 18, 18, 20, 24, 24, 24, 24, 24, 31, 28, 27, 32, 30, 36, 32, 32, 36, 36, 48, 36, 38, 40, 42, 48, 42, 48, 44, 48, 54, 48, 48, 48, 57, 62, 54, 56, 54, 54, 72, 64, 60, 60, 60, 72, 62, 64, 72, 64, 84, 72, 68, 72
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), this sequence (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p > 3, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p > 3, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385137(n).
Multiplicative with a(p^e) = p^e if p <= 3, and (p^(e+1)-1)/(p-1) if p >= 5.
In general, the sum of divisors d of n such that n/d is q-rough (not divisible by a prime smaller than q) is multiplicative with a(p^e) = p^e if p <= q, and (p^(e+1)-1)/(p-1) if p > q.
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-rough has Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (Pi^2/18)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-rough has an average order c * n^2 / 2, where c = zeta(2) * A072045(k-1)/A072044(k-1) for k >= 2.

A186100 Expansion of 2 * a(q^2)^2 - a(q)^2 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -12, -12, -12, -12, -72, -12, -96, -12, -12, -72, -144, -12, -168, -96, -72, -12, -216, -12, -240, -72, -96, -144, -288, -12, -372, -168, -12, -96, -360, -72, -384, -12, -144, -216, -576, -12, -456, -240, -168, -72, -504, -96, -528, -144, -72, -288
Offset: 0

Views

Author

Michael Somos, Feb 12 2011

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 12*q - 12*q^2 - 12*q^3 - 12*q^4 - 72*q^5 - 12*q^6 - 96*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -12 DivisorSum[ n, # Boole[ 1 == GCD[#, 6]] &]]; (* Michael Somos, Jul 07 2015 *)
    a[ n_] := SeriesCoefficient[(EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^3])^2 - 1/2 (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)])^2, {x, 0, n}]; (* Michael Somos, Jul 07 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, d * (1 == gcd( d, 6) ) ) )};
    
  • PARI
    {a(n) = if( n<1, n==0, -12 * direuler( p=2, n, 1 / (1 - X) / (1 - (p>3) * p * X)) [n])};

Formula

Expansion of b(x) * b(x^2) - c(x) * c(x^2) in powers of x where b(), c() are cubic AGM functions.
Expansion of (phi(-x) * phi(-x^3))^2 - 8 * x * (psi(x) * psi(x^3))^2 in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (P(q) - 2*P(q^2) - 3*P(q^3) + 6*P(q^6)) / 2 in powers of q where P() is a Ramanujan Eisenstein series. - Michael Somos, Jul 07 2015
a(n) = -12 * A186099(n) if n>0. a(2*n) = a(n). a(2*n + 1) = - A008653(2*n + 1). a(n) = 2 * A008653(n) - A008653(2*n) = A131946(n) - 8 * A111932(n) = A131943(n) - 9 * A121443(n).
a(3*n) = a(n). a(6*n + 5) = -72 * A098098(n).- Michael Somos, Jul 07 2015

A385005 The sum of the cubefull divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 121, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 109, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

The sum of the terms in A036966 that divide n.
The number of these divisors is A190867(n), and the largest of them is A360540(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), this sequence (cubefull), A385006 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p - If[e == 1, 0, p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^(e+1)-1)/(p-1) - p - if(e == 1, 0, p^2));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = ((p^(e+1)-1) / (p-1)) - p - p^2 if e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - p^(s-1) + 1/p^(3*s-3)).

A281786 Expansion of a(q) * b(q^2) + a(q^2) * b(q) in powers of q where a(), b() are cubic AGM functions.

Original entry on oeis.org

2, 3, 3, -24, 3, 18, -24, 24, 3, -24, 18, 36, -24, 42, 24, -144, 3, 54, -24, 60, 18, -192, 36, 72, -24, 93, 42, -24, 24, 90, -144, 96, 3, -288, 54, 144, -24, 114, 60, -336, 18, 126, -192, 132, 36, -144, 72, 144, -24, 171, 93, -432, 42, 162, -24, 216, 24, -480
Offset: 0

Views

Author

Michael Somos, Apr 09 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 2 + 3*q + 3*q^2 - 24*q^3 + 3*q^4 + 18*q^5 - 24*q^6 + 24*q^7 + 3*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 2 Boole[n == 0], 3 If[ Divisible[n, 3], -8, 1] DivisorSigma[ 1, n / (2^IntegerExponent[n, 2] 3^IntegerExponent[n, 3])]];
    a[ n_] := If[ n < 1, 2 Boole[n == 0], 3 Times @@ (Which[ # < 3, 1, # == 3, -8, True, (#^(#2+1) - 1) / (# - 1)] & @@@ FactorInteger@n)];
  • PARI
    {a(n) = if( n<1, 2*(n==0), if( n%3, 3, -24) * sigma(n / (2^valuation(n, 2) * 3^valuation(n, 3))))};
    
  • PARI
    {a(n) = if( n<1, 2*(n==0), 3 * sumdiv(n, d, d*(d%2)) - if( n%3==0, 36 * sumdiv(n/3, d, d*(d%2))) + if( n%9==0, 81 * sumdiv(n/9, d, d*(d%2))))};

Formula

Expansion of 3 * b(q^3) * b(q^6) - b(q) * b(q^2) in powers of q where b() is a cubic AGM function.
a(n) = 3*b(n) if n>0 where b() is multiplicative with b(2^e) = 1, b(3^e) = -8 if e>0, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(n) = 3 * A281786(n) if n>0. a(2*n) = a(n). a(3*n) = -24 * A186099(n).

A284151 Sum_{d|n, d=1 or 6 mod 7} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 9, 1, 1, 1, 7, 14, 1, 16, 9, 1, 7, 1, 21, 1, 23, 1, 15, 1, 14, 28, 1, 30, 22, 1, 9, 1, 35, 1, 43, 1, 1, 14, 29, 42, 7, 44, 23, 16, 1, 1, 63, 1, 51, 1, 14, 1, 34, 56, 9, 58, 30, 1, 42, 1, 63, 1, 73, 14, 29, 1, 35, 70, 1, 72, 51, 1, 1, 16, 77, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), A284150 (k=5), A186099 (k=6), this sequence (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 1 || Mod[d, 7]==6, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(d%7==1 || d%7==6, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==1 or d%7 == 6]) # Indranil Ghosh, Mar 21 2017

Formula

a(n) = A284099(n) + A284105(n). - R. J. Mathar, Mar 21 2017
Showing 1-10 of 12 results. Next