A186102 Smallest prime p such that p == n (mod prime(n)).
3, 2, 3, 11, 5, 19, 7, 103, 101, 97, 11, 197, 13, 229, 109, 281, 17, 79, 19, 233, 167, 101, 23, 113, 607, 127, 233, 349, 29, 821, 31, 163, 307, 173, 631, 1093, 37, 853, 373, 1597, 41, 223, 43, 1009, 439, 643, 47, 271, 503, 2111, 983, 769, 53, 1811, 569, 2423
Offset: 1
Keywords
Examples
Eighth prime is 19, and 103 is the smallest prime p such that p mod 19 is 8. Therefore a(8) = 103.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a186102 n = f a000040_list where f (q:qs) = if (q - n) `mod` (a000040 n) == 0 then q else f qs -- Reinhard Zumkeller, Aug 21 2015
-
Magma
Aux:=function(n); q:=NthPrime(n); p:=2; while p mod q ne n do p:=NextPrime(p); end while; return p; end function; [ Aux(n): n in [1..70] ]; // Klaus Brockhaus, Feb 12 2011
-
Mathematica
k=200;Table[p=Prime[n];m=n;While[!PrimeQ[m],m=m+p];m,{n,k}]; (* For the first k terms. Zak Seidov, Dec 13 2013 *) Flatten[With[{prs=Prime[Range[500]]},Table[Select[prs,Mod[#,Prime[n]] == n&,1],{n,60}]]] (* Harvey P. Dale, Mar 30 2012 *)
-
Sage
def A186102(n): np = nth_prime(n); return next(p for p in Primes() if p % np == n) # [D. S. McNeil, Feb 13 2011]
Comments