cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A182454 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^5.

Original entry on oeis.org

1, 1, 2, 7, 27, 112, 492, 2243, 10513, 50353, 245353, 1212398, 6061225, 30601910, 155808915, 799096655, 4124491215, 21408066097, 111672838857, 585128521777, 3078178384457, 16252057372887, 86089680204939, 457400940705274, 2436895852070559, 13015917111573039
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2012

Keywords

Comments

Compare to a g.f. C(x) of Catalan numbers: C(x) = 1 + x*C(x) + x^2*C(x)^3.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 27*x^4 + 112*x^5 + 492*x^6 +..
Related expansions:
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 141*x^4 + 615*x^5 + 2792*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 241*x^4 + 1080*x^5 + 4998*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 380*x^4 + 1751*x^5 + 8270*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A+x^2*A^5+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x*A^4)/((1+x*A^3)*1+x*O(x^n))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x^2/serreverse((sqrt(1+4*x-4*x^3+x^2*O(x^n))-1)/2)),n)}
    
  • PARI
    {a(n)=polcoeff(sqrt((1/x)*serreverse((1+2*x-2*x^3-sqrt(1+4*x-4*x^3+x^3*O(x^n)))/(2*x))),n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: A(x) = sqrt( (1/x)*Series_Reversion( (1 + 2*x - 2*x^3 - sqrt(1 + 4*x - 4*x^3))/(2*x) ) ).
G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A019497 (number of ternary search trees on n keys).
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x*A(x)^4) / (1 + x*A(x)^3).
Recurrence: 64*(n-1)*n*(2*n - 1)*(2*n + 1)*(5*n - 17)*(5*n - 14)*(5*n - 12)*(5*n - 11)*(5*n - 9)*(5*n - 7)*a(n) = 32*(n-1)*(2*n - 1)*(5*n - 17)*(5*n - 14)*(5*n - 12)*(2500*n^5 - 16000*n^4 + 37400*n^3 - 38660*n^2 + 16767*n - 2304)*a(n-1) + (5*n - 17)*(5*n - 8)*(353125*n^8 - 4590625*n^7 + 26079625*n^6 - 84463075*n^5 + 169363570*n^4 - 212446228*n^3 + 159705192*n^2 - 64147968*n + 10184832)*a(n-2) + 8*(5*n - 2)*(1000000*n^9 - 19100000*n^8 + 158791250*n^7 - 752940875*n^6 + 2239835525*n^5 - 4325771435*n^4 + 5410989493*n^3 - 4216402206*n^2 + 1852118136*n - 348425280)*a(n-3) - 8*(5*n - 7)*(5*n - 4)*(5*n - 2)*(20000*n^7 - 368000*n^6 + 2847450*n^5 - 11988080*n^4 + 29592479*n^3 - 42711795*n^2 + 33256206*n - 10724400)*a(n-4) + 8*(n-4)*(2*n - 5)*(4*n - 19)*(4*n - 13)*(5*n - 12)*(5*n - 9)*(5*n - 7)*(5*n - 6)*(5*n - 4)*(5*n - 2)*a(n-5). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ sqrt((1 + 2*r*s^4) / (10*Pi)) / (2*s * n^(3/2) * r^(n + 1/2)), where r = 0.1762643878022406506907195466376048222228890731329... and s = 1.517477187449684643254531724911215527841313263152... are roots of the system of equations 1 + r*s + r^2*s^5 = s, r + 5*r^2*s^4 = 1. - Vaclav Kotesovec, Nov 18 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(n+3*k,k) * binomial(n+2*k,n-2*k) / (4*k+1). - Seiichi Manyama, Jul 26 2023

A364472 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^6.

Original entry on oeis.org

1, 1, 2, 8, 35, 163, 808, 4162, 22041, 119325, 657384, 3673394, 20769983, 118610807, 683131766, 3963486380, 23144000681, 135911263309, 802143851323, 4755506884495, 28306896506651, 169110331570307, 1013643450123455, 6094125091837335, 36739933169338731
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+4*k, k)*binomial(n+3*k, n-2*k)/(5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k,k) * binomial(n+3*k,n-2*k) / (5*k+1) = Sum_{k=0..floor(n/2)} binomial(n+4*k,6*k) * binomial(6*k,k) / (5*k+1).

A364476 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^7.

Original entry on oeis.org

1, 1, 2, 9, 44, 226, 1241, 7093, 41666, 250260, 1529993, 9488398, 59545909, 377451385, 2413157855, 15542535697, 100753850132, 656856027658, 4303970039402, 28328599504756, 187214549485759, 1241775795647609, 8263989319451514, 55163575187733922
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+5*k, k)*binomial(n+4*k, n-2*k)/(6*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+5*k,k) * binomial(n+4*k,n-2*k) / (6*k+1) = Sum_{k=0..floor(n/2)} binomial(n+5*k,7*k) * binomial(7*k,k) / (6*k+1).

A365733 G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^5*A(x)^3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 127, 215, 367, 676, 1376, 2982, 6514, 13855, 28407, 56543, 111127, 219918, 444450, 919744, 1933732, 4082467, 8576027, 17861347, 36938427, 76207797, 157652981, 328119005, 687377565, 1446665765, 3050094661, 6427116181
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n-5*k, k)*binomial(n-2*k+1, n-5*k)/(n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(n-5*k,k) * binomial(n-2*k+1,n-5*k) / (n-2*k+1) = Sum_{k=0..floor(n/6)} binomial(n-2*k,4*k) * binomial(4*k,k) / (3*k+1).

A378291 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3*n-2*r+k,r) * binomial(r,n-r)/(3*n-2*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 6, 0, 1, 4, 9, 16, 20, 0, 1, 5, 14, 31, 56, 72, 0, 1, 6, 20, 52, 114, 208, 273, 0, 1, 7, 27, 80, 201, 438, 806, 1073, 0, 1, 8, 35, 116, 325, 800, 1739, 3220, 4333, 0, 1, 9, 44, 161, 495, 1341, 3260, 7077, 13168, 17869, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2024

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,    1,    1,    1, ...
  0,   1,   2,    3,    4,    5,    6, ...
  0,   2,   5,    9,   14,   20,   27, ...
  0,   6,  16,   31,   52,   80,  116, ...
  0,  20,  56,  114,  201,  325,  495, ...
  0,  72, 208,  438,  800, 1341, 2118, ...
  0, 273, 806, 1739, 3260, 5615, 9119, ...
		

Crossrefs

Columns k=0..1 give A000007, A186996.
Cf. A378237.

Programs

  • PARI
    T(n, k, t=1, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(1/k) * (1 + x * A_k(x)^(3/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A186996.
B(x)^k = B(x)^(k-1) + x * B(x)^k + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k) + T(n-2,k+3) for n > 1.

A364410 G.f. A(x) satisfies A(x) = 1 + x^2 * (A(x) / (1 - x))^4.

Original entry on oeis.org

1, 0, 1, 4, 14, 52, 201, 800, 3260, 13536, 57068, 243664, 1051512, 4579088, 20097526, 88810872, 394811696, 1764477304, 7923087616, 35728412152, 161731039076, 734646128920, 3347600839252, 15298276784648, 70097391229500, 321974115549256, 1482242974320685
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A186996.

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+2*k-1, n-2*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+2*k-1,n-2*k) * binomial(4*k,k) / (3*k+1).

A365079 G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^4*A(x)^3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 131, 247, 511, 1156, 2696, 6172, 13664, 29563, 63871, 140341, 315185, 717962, 1639822, 3728276, 8432696, 19047924, 43166420, 98378502, 225355290, 517683270, 1190034046, 2735049866, 6287002806, 14467864356, 33355524916
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(n-k+1, n-4*k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * binomial(n-k+1,n-4*k)/(n-k+1).
Showing 1-7 of 7 results.