A187204 Numbers n such that the bottom entry in the difference table of the divisors of n is 0.
10, 171, 1947, 2619, 265105, 478834027, 974622397, 11373118351
Offset: 1
Examples
10 has divisors 1, 2, 5, 10. The third difference of these numbers is 0. This is the only possible number having 2 prime factors of the form p*q. The other terms have factorization 171 = 3^2*19, 1947 = 3*11*59, 2619 = 3^3*97, and 265105 = 5*37*1433.
Programs
-
Haskell
import Data.List (elemIndices) a187204 n = a187204_list !! (n-1) a187204_list = map (+ 1) $ elemIndices 0 $ map a187202 [1..] -- Reinhard Zumkeller, Aug 02 2011
-
Mathematica
t = {}; Do[d = Divisors[n]; If[Differences[d, Length[d]-1] == {0}, AppendTo[t, n]], {n, 10^4}]; t (* T. D. Noe, Aug 01 2011 *)
-
PARI
is(n) = my(d=divisors(n)); !sum(i=1, #d, binomial(#d-1,i-1)*d[i]*(-1)^i) \\ David A. Corneth, Apr 08 2017
Extensions
a(6)-a(7) from Donovan Johnson, Aug 03 2011
a(8) from Giovanni Resta, Apr 11 2017
Comments