cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A187211 First differences of A187210.

Original entry on oeis.org

0, 1, 4, 7, 12, 22, 20, 22, 40, 54, 40, 22, 40, 54, 56, 70, 120, 134, 72, 22, 40, 54, 56, 70, 120, 134, 88, 70, 120, 150, 168, 246, 360, 326, 136, 22, 40, 54, 56, 70, 120, 134, 88, 70, 120, 150, 168, 246, 360, 326, 152, 70, 120, 150, 168, 246, 360, 342, 232, 246, 376, 454, 568, 838, 1032
Offset: 0

Views

Author

Omar E. Pol, Mar 07 2011

Keywords

Comments

Number of Q-toothpicks added at n-th stage to the Q-toothpick structure of A187210.
For the connection with A139251, the first differences of the toothpick sequence A139250, see the Formula section. - Omar E. Pol, Apr 02 2016

Examples

			Written as an irregular triangle the sequence begins:
0;
1;
4;
7;
12;
22, 20;
22, 40, 54, 40;
22, 40, 54, 56, 70, 120, 134, 72;
22, 40, 54, 56, 70, 120, 134, 88, 70, 120, 150, 168, 246, 360, 326, 136;
...
The rows of this triangle tend to A188156.
From _Omar E. Pol_, Apr 02 2016: (Start)
For n = 5 we have that A139251(5-2) = 4, A267699(5-2) = 7 and A267695(5-1) = 7, so a(5) = 2*4 + 7 + 7 = 22.
For n = 10 we have that A139251(10-2) = 8, A267699(10-2) = 20 and A267695(10-1) = 4, so a(10) = 2*8 + 20 + 4 = 40.
(End)
Starting from a(3) = 7 the row lengths of triangle are the terms of A011782. - _Omar E. Pol_, Apr 04 2016
		

Crossrefs

Formula

a(2^n + 2) = 16 + 8(2^(n-1) - 1), n >= 3. [Nathaniel Johnston, Mar 26 2011]
From Omar E. Pol, Apr 02 2016: (Start)
a(n) = floor(sqrt(2*n^3)), if 0<=n<=2 or n=6.
a(n) = 2*A139251(n-2) + A267699(n-2) + A267695(n-1), if 3<=n<=5 or n>=7.
(End)

Extensions

Terms after a(7) from Nathaniel Johnston, Mar 26 2011

A188346 Number of hearts present in the n-th generation of the Q-toothpick sequence A187210.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 4, 4, 4, 8, 12, 12, 12, 16, 20, 20, 28, 44, 52, 52, 52, 56, 60, 60, 68, 84, 92, 92, 96, 108, 116, 124, 156, 196, 212, 212, 212, 216, 220, 220, 228, 244, 252, 252, 256, 268, 276, 284, 316, 356, 372, 372, 376, 388, 396
Offset: 0

Views

Author

Nathaniel Johnston, Mar 28 2011

Keywords

Comments

See A187210 for a description of the different shapes that appear in the Q-toothpick sequence.

Crossrefs

Formula

It appears that a(n) = A211008(n-2,2), n >= 3. (Checked by hand up n = 130 in the toothpick structure of A139250). - Omar E. Pol, Sep 25 2012

A188344 Number of circles present in the n-th generation of the Q-toothpick sequence A187210.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 3, 9, 13, 15, 15, 21, 25, 27, 31, 45, 53, 55, 55, 61, 65, 67, 71, 85, 93, 95, 99, 113, 121, 127, 147, 181, 197, 199, 199, 205, 209, 211, 215, 229, 237, 239, 243, 257, 265, 271, 291, 325, 341, 343
Offset: 0

Views

Author

Nathaniel Johnston, Mar 28 2011

Keywords

Comments

See A187210 for a description of the different shapes that appear in the Q-toothpick sequence.

Crossrefs

A188345 Number of diamonds present in the n-th generation of the Q-toothpick sequence A187210.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 5, 5, 11, 21, 29, 29, 35, 43, 49, 53, 75, 105, 121, 121, 127, 135, 141, 145, 167, 195, 209, 213, 231, 251, 265, 293, 367, 445, 477, 477, 483, 491, 497, 501, 523, 551, 565, 569, 587, 607, 621, 649, 723, 799
Offset: 0

Views

Author

Nathaniel Johnston, Mar 28 2011

Keywords

Comments

See A187210 for a description of the different shapes that appear in the Q-toothpick sequence.

Crossrefs

A139250 Toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 23, 35, 43, 47, 55, 67, 79, 95, 123, 155, 171, 175, 183, 195, 207, 223, 251, 283, 303, 319, 347, 383, 423, 483, 571, 651, 683, 687, 695, 707, 719, 735, 763, 795, 815, 831, 859, 895, 935, 995, 1083, 1163, 1199, 1215, 1243, 1279, 1319, 1379
Offset: 0

Views

Author

Omar E. Pol, Apr 24 2008

Keywords

Comments

A toothpick is a copy of the closed interval [-1,1]. (In the paper, we take it to be a copy of the unit interval [-1/2, 1/2].)
We start at stage 0 with no toothpicks.
At stage 1 we place a toothpick in the vertical direction, anywhere in the plane.
In general, given a configuration of toothpicks in the plane, at the next stage we add as many toothpicks as possible, subject to certain conditions:
- Each new toothpick must lie in the horizontal or vertical directions.
- Two toothpicks may never cross.
- Each new toothpick must have its midpoint touching the endpoint of exactly one existing toothpick.
The sequence gives the number of toothpicks after n stages. A139251 (the first differences) gives the number added at the n-th stage.
Call the endpoint of a toothpick "exposed" if it does not touch any other toothpick. The growth rule may be expressed as follows: at each stage, new toothpicks are placed so their midpoints touch every exposed endpoint.
This is equivalent to a two-dimensional cellular automaton. The animations show the fractal-like behavior.
After 2^k - 1 steps, there are 2^k exposed endpoints, all located on two lines perpendicular to the initial toothpick. At the next step, 2^k toothpicks are placed on these lines, leaving only 4 exposed endpoints, located at the corners of a square with side length 2^(k-1) times the length of a toothpick. - M. F. Hasler, Apr 14 2009 and others. For proof, see the Applegate-Pol-Sloane paper.
If the third condition in the definition is changed to "- Each new toothpick must have at exactly one of its endpoints touching the midpoint of an existing toothpick" then the same sequence is obtained. The configurations of toothpicks are of course different from those in the present sequence. But if we start with the configurations of the present sequence, rotate each toothpick a quarter-turn, and then rotate the whole configuration a quarter-turn, we obtain the other configuration.
If the third condition in the definition is changed to "- Each new toothpick must have at least one of its endpoints touching the midpoint of an existing toothpick" then the sequence n^2 - n + 1 is obtained, because there are no holes left in the grid.
A "toothpick" of length 2 can be regarded as a polyedge with 2 components, both on the same line. At stage n, the toothpick structure is a polyedge with 2*a(n) components.
Conjecture: Consider the rectangles in the sieve (including the squares). The area of each rectangle (A = b*c) and the edges (b and c) are powers of 2, but at least one of the edges (b or c) is <= 2.
In the toothpick structure, if n >> 1, we can see some patterns that look like "canals" and "diffraction patterns". For example, see the Applegate link "A139250: the movie version", then enter n=1008 and click "Update". See also "T-square (fractal)" in the Links section. - Omar E. Pol, May 19 2009, Oct 01 2011
From Benoit Jubin, May 20 2009: The web page "Gallery" of Chris Moore (see link) has some nice pictures that are somewhat similar to the pictures of the present sequence. What sequences do they correspond to?
For a connection to Sierpiński triangle and Gould's sequence A001316, see the leftist toothpick triangle A151566.
Eric Rowland comments on Mar 15 2010 that this toothpick structure can be represented as a 5-state CA on the square grid. On Mar 18 2010, David Applegate showed that three states are enough. See links.
Equals row sums of triangle A160570 starting with offset 1; equivalent to convolving A160552: (1, 1, 3, 1, 3, 5, 7, ...) with (1, 2, 2, 2, ...). Equals A160762: (1, 0, 2, -2, 2, 2, 2, -6, ...) convolved with 2*n - 1: (1, 3, 5, 7, ...). Starting with offset 1 equals A151548: [1, 3, 5, 7, 5, 11, 17, 15, ...] convolved with A078008 signed (A151575): [1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...]. - Gary W. Adamson, May 19 2009, May 25 2009
For a three-dimensional version of the toothpick structure, see A160160. - Omar E. Pol, Dec 06 2009
From Omar E. Pol, May 20 2010: (Start)
Observation about the arrangement of rectangles:
It appears there is a nice pattern formed by distinct modular substructures: a central cross surrounded by asymmetrical crosses (or "hidden crosses") of distinct sizes and also by "nuclei" of crosses.
Conjectures: after 2^k stages, for k >= 2, and for m = 1 to k - 1, there are 4^(m-1) substructures of size s = k - m, where every substructure has 4*s rectangles. The total number of substructures is equal to (4^(k-1)-1)/3 = A002450(k-1). For example: If k = 5 (after 32 stages) we can see that:
a) There is a central cross, of size 4, with 16 rectangles.
b) There are four hidden crosses, of size 3, where every cross has 12 rectangles.
c) There are 16 hidden crosses, of size 2, where every cross has 8 rectangles.
d) There are 64 nuclei of crosses, of size 1, where every nucleus has 4 rectangles.
Hence the total number of substructures after 32 stages is equal to 85. Note that in every arm of every substructure, in the potential growth direction, the length of the rectangles are the powers of 2. (See illustrations in the links. See also A160124.) (End)
It appears that the number of grid points that are covered after n-th stage of the toothpick structure, assuming the toothpicks have length 2*k, is equal to (2*k-2)*a(n) + A147614(n), k > 0. See the formulas of A160420 and A160422. - Omar E. Pol, Nov 13 2010
Version "Gullwing": on the semi-infinite square grid, at stage 1, we place a horizontal "gull" with its vertices at [(-1, 2), (0, 1), (1, 2)]. At stage 2, we place two vertical gulls. At stage 3, we place four horizontal gulls. a(n) is also the number of gulls after n-th stage. For more information about the growth of gulls see A187220. - Omar E. Pol, Mar 10 2011
From Omar E. Pol, Mar 12 2011: (Start)
Version "I-toothpick": we define an "I-toothpick" to consist of two connected toothpicks, as a bar of length 2. An I-toothpick with length 2 is formed by two toothpicks with length 1. The midpoint of an I-toothpick is touched by its two toothpicks. a(n) is also the number of I-toothpicks after n-th stage in the I-toothpick structure. The I-toothpick structure is essentially the original toothpick structure in which every toothpick is replaced by an I-toothpick. Note that in the physical model of the original toothpick structure the midpoint of a wooden toothpick of the new generation is superimposed on the endpoint of a wooden toothpick of the old generation. However, in the physical model of the I-toothpick structure the wooden toothpicks are not overlapping because all wooden toothpicks are connected by their endpoints. For the number of toothpicks in the I-toothpick structure see A160164 which also gives the number of gullwing in a gullwing structure because the gullwing structure of A160164 is equivalent to the I-toothpick structure. It also appears that the gullwing sequence A187220 is a supersequence of the original toothpick sequence A139250 (this sequence).
For the connection with the Ulam-Warburton cellular automaton see the Applegate-Pol-Sloane paper and see also A160164 and A187220.
(End)
A version in which the toothpicks are connected by their endpoints: on the semi-infinite square grid, at stage 1, we place a vertical toothpick of length 1 from (0, 0). At stage 2, we place two horizontal toothpicks from (0,1), and so on. The arrangement looks like half of the I-toothpick structure. a(n) is also the number of toothpicks after the n-th. - Omar E. Pol, Mar 13 2011
Version "Quarter-circle" (or Q-toothpick): a(n) is also the number of Q-toothpicks after the n-th stage in a Q-toothpick structure in the first quadrant. We start from (0,1) with the first Q-toothpick centered at (1, 1). The structure is asymmetric. For a similar structure but starting from (0, 0) see A187212. See A187210 and A187220 for more information. - Omar E. Pol, Mar 22 2011
Version "Tree": It appears that a(n) is also the number of toothpicks after the n-th stage in a toothpick structure constructed following a special rule: the toothpicks of the new generation have length 4 when they are placed on the infinite square grid (note that every toothpick has four components of length 1), but after every stage, one (or two) of the four components of every toothpick of the new generation is removed, if such component contains an endpoint of the toothpick and if such endpoint is touching the midpoint or the endpoint of another toothpick. The truncated endpoints of the toothpicks remain exposed forever. Note that there are three sizes of toothpicks in the structure: toothpicks of lengths 4, 3 and 2. A159795 gives the total number of components in the structure after the n-th stage. A153006 (the corner sequence of the original version) gives 1/4 of the total of components in the structure after the n-th stage. - Omar E. Pol, Oct 24 2011
From Omar E. Pol, Sep 16 2012: (Start)
It appears that a(n)/A147614(n) converges to 3/4.
It appears that a(n)/A160124(n) converges to 3/2.
It appears that a(n)/A139252(n) converges to 3.
Also:
It appears that A147614(n)/A160124(n) converges to 2.
It appears that A160124(n)/A139252(n) converges to 2.
It appears that A147614(n)/A139252(n) converges to 4.
(End)
It appears that a(n) is also the total number of ON cells after n-th stage in a quadrant of the structure of the cellular automaton described in A169707 plus the total number of ON cells after n+1 stages in a quadrant of the mentioned structure, without its central cell. See the illustration of the NW-NE-SE-SW version in A169707. See also the connection between A160164 and A169707. - Omar E. Pol, Jul 26 2015
On the infinite Cairo pentagonal tiling consider the symmetric figure formed by two non-adjacent pentagons connected by a line segment joining two trivalent nodes. At stage 1 we start with one of these figures turned ON. The rule for the next stages is that the concave part of the figures of the new generation must be adjacent to the complementary convex part of the figures of the old generation. a(n) gives the number of figures that are ON in the structure after n-th stage. A160164(n) gives the number of ON cells in the structure after n-th stage. - Omar E. Pol, Mar 29 2018
From Omar E. Pol, Mar 06 2019: (Start)
The "word" of this sequence is "ab". For further information about the word of cellular automata see A296612.
Version "triangular grid": a(n) is also the total number of toothpicks of length 2 after n-th stage in the toothpick structure on the infinite triangular grid, if we use only two of the three axes. Otherwise, if we use the three axes, so we have the sequence A296510 which has word "abc".
The normal toothpick structure can be considered a superstructure of the Ulam-Warburton celular automaton since A147562(n) equals here the total number of "hidden crosses" after 4*n stages, including the central cross (beginning to count the crosses when their "nuclei" are totally formed with 4 quadrilaterals). Note that every quadrilateral in the structure belongs to a "hidden cross".
Also, the number of "hidden crosses" after n stages equals the total number of "flowers with six petals" after n-th stage in the structure of A323650, which appears to be a "missing link" between this sequence and A147562.
Note that the location of the "nuclei of the hidden crosses" is very similar (essentially the same) to the location of the "flowers with six petals" in the structure of A323650 and to the location of the "ON" cells in the version "one-step bishop" of the Ulam-Warburton cellular automaton of A147562. (End)
From Omar E. Pol, Nov 27 2020: (Start)
The simplest substructures are the arms of the hidden crosses. Each closed region (square or rectangle) of the structure belongs to one of these arms. The narrow arms have regions of area 1, 2, 4, 8, ... The broad arms have regions of area 2, 4, 8, 16 , ... Note that after 2^k stages, with k >= 3, the narrow arms of the main hidden crosses in each quadrant frame the size of the toothpick structure after 2^(k-1) stages.
Another kind of substructure could be called "bar chart" or "bar graph". This substructure is formed by the rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure after 2^k stages, with k >= 2. The height of these successive regions gives the first 2^(k-1) - 1 terms from A006519. For example: if k = 5 the respective heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1]. The area of these successive regions gives the first 2^(k-1) - 1 terms of A171977. For example: if k = 5 the respective areas are [2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2].
For a connection to Mersenne primes (A000668) and perfect numbers (A000396) see A153006.
For a representation of the Wagstaff primes (A000979) using the toothpick structure see A194810.
For a connection to stained glass windows and a hidden curve see A336532. (End)
It appears that the graph of a(n) bears a striking resemblance to the cumulative distribution function F(x) for X the random variable taking values in [0,1], where the binary expansion of X is given by a sequence of independent coin tosses with probability 3/4 of being 1 at each bit. It appears that F(n/2^k)*(2^(2k+1)+1)/3 approaches a(n) for k large. - James Coe, Jan 10 2022

Examples

			a(10^10) = 52010594272060810683. - _David A. Corneth_, Mar 26 2015
		

References

  • D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
  • L. D. Pryor, The Inheritance of Inflorescence Characters in Eucalyptus, Proceedings of the Linnean Society of New South Wales, V. 79, (1954), p. 81, 83.
  • Richard P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 95, figure 1.28, Cambridge University Press (2012), p. 120, 166.

Crossrefs

Programs

  • Maple
    G := (x/((1-x)*(1+2*x))) * (1 + 2*x*mul(1+x^(2^k-1)+2*x^(2^k),k=0..20)); # N. J. A. Sloane, May 20 2009, Jun 05 2009
    # From N. J. A. Sloane, Dec 25 2009: A139250 is T, A139251 is a.
    a:=[0,1,2,4]; T:=[0,1,3,7]; M:=10;
    for k from 1 to M do
    a:=[op(a),2^(k+1)];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    for j from 1 to 2^(k+1)-1 do
    a:=[op(a), 2*a[j+1]+a[j+2]];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    od: od: a; T;
  • Mathematica
    CoefficientList[ Series[ (x/((1 - x)*(1 + 2x))) (1 + 2x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] (* Robert G. Wilson v, Dec 06 2010 *)
    a[0] = 0; a[n_] := a[n] = Module[{m, k}, m = 2^(Length[IntegerDigits[n, 2]] - 1); k = (2m^2+1)/3; If[n == m, k, k + 2 a[n - m] + a[n - m + 1] - 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 06 2018, after David A. Corneth *)
  • PARI
    A139250(n,print_all=0)={my(p=[], /* set of "used" points. Points are written as complex numbers, c=x+iy. Toothpicks are of length 2 */
    ee=[[0,1]], /* list of (exposed) endpoints. Exposed endpoints are listed as [c,d] where c=x+iy is the position of the endpoint, and d (unimodular) is the direction */
    c,d,ne, cnt=1); print_all && print1("0,1"); n<2 && return(n);
    for(i=2,n, p=setunion(p, Set(Mat(ee~)[,1])); /* add endpoints (discard directions) from last move to "used" points */
    ne=[]; /* new (exposed) endpoints */
    for( k=1, #ee, /* add endpoints of new toothpicks if not among the used points */
    setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne,Set([[c,d]]));
    setsearch(p, c-2*d) || ne=setunion(ne,Set([[c-2*d,-d]]));
    ); /* using Set() we have the points sorted, so it's easy to remove those which finally are not exposed because they touch a new toothpick */
    forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] && k-- && ee=vecextract(ee,Str("^"k"..",k+1)));
    cnt+=#ee; /* each exposed endpoint will give a new toothpick */
    print_all && print1(","cnt));cnt} \\ M. F. Hasler, Apr 14 2009
    
  • PARI
    \\works for n > 0
    a(n) = {my(k = (2*msb(n)^2 + 1) / 3); if(n==msb(n),k , k + 2*a(n-msb(n)) + a(n - msb(n) + 1) - 1)}
    msb(n)=my(t=0);while(n>>t>0,t++);2^(t-1)\\ David A. Corneth, Mar 26 2015
    
  • Python
    def msb(n):
        t = 0
        while n>>t > 0:
            t += 1
        return 2**(t - 1)
    def a(n):
        k = (2 * msb(n)**2 + 1) / 3
        return 0 if n == 0 else k if n == msb(n) else k + 2*a(n - msb(n)) + a(n - msb(n) + 1) - 1
    [a(n) for n in range(101)]  # Indranil Ghosh, Jul 01 2017, after David A. Corneth's PARI script

Formula

a(2^k) = A007583(k), if k >= 0.
a(2^k-1) = A006095(k+1), if k >= 1.
a(A000225(k)) - a((A000225(k)-1)/2) = A006516(k), if k >= 1.
a(A000668(k)) - a((A000668(k)-1)/2) = A000396(k), if k >= 1.
G.f.: (x/((1-x)*(1+2*x))) * (1 + 2*x*Product_{k>=0} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 20 2009, Jun 05 2009
One can show that lim sup a(n)/n^2 = 2/3, and it appears that lim inf a(n)/n^2 is 0.451... - Benoit Jubin, Apr 15 2009 and Jan 29 2010, N. J. A. Sloane, Jan 29 2010
Observation: a(n) == 3 (mod 4) for n >= 2. - Jaume Oliver Lafont, Feb 05 2009
a(2^k-1) = A000969(2^k-2), if k >= 1. - Omar E. Pol, Feb 13 2010
It appears that a(n) = (A187220(n+1) - 1)/2. - Omar E. Pol, Mar 08 2011
a(n) = 4*A153000(n-2) + 3, if n >= 2. - Omar E. Pol, Oct 01 2011
It appears that a(n) = A160552(n) + (A169707(n) - 1)/2, n >= 1. - Omar E. Pol, Feb 15 2015
It appears that a(n) = A255747(n) + A255747(n-1), n >= 1. - Omar E. Pol, Mar 16 2015
Let n = msb(n) + j where msb(n) = A053644(n) and let a(0) = 0. Then a(n) = (2 * msb(n)^2 + 1)/3 + 2 * a(j) + a(j+1) - 1. - David A. Corneth, Mar 26 2015
It appears that a(n) = (A169707(n) - 1)/4 + (A169707(n+1) - 1)/4, n >= 1. - Omar E. Pol, Jul 24 2015

Extensions

Verified and extended, a(49)-a(53), using the given PARI code by M. F. Hasler, Apr 14 2009
Further edited by N. J. A. Sloane, Jan 28 2010

A187220 Gullwing sequence (see Comments lines for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 15, 23, 31, 47, 71, 87, 95, 111, 135, 159, 191, 247, 311, 343, 351, 367, 391, 415, 447, 503, 567, 607, 639, 695, 767, 847, 967, 1143, 1303, 1367, 1375, 1391, 1415, 1439, 1471, 1527, 1591, 1631, 1663, 1719, 1791, 1871, 1991, 2167, 2327, 2399, 2431
Offset: 0

Views

Author

Omar E. Pol, Mar 07 2011

Keywords

Comments

The Gullwing (or G-toothpick) sequence is a special type of toothpick sequence. It appears that this is a superstructure of A139250.
We define a "G-toothpick" to consist of two arcs of length Pi/2 forming a "gullwing" whose total length is equal to Pi = 3.141592...
A gullwing-shaped toothpick or G-toothpick or simply "gull" is formed by two Q-toothpicks (see A187210).
A G-toothpick has a midpoint and two endpoints. An endpoint is said to be "exposed" if it is not the midpoint or endpoint of any other G-toothpick.
The sequence gives the number of G-toothpicks in the structure after n stages. A187221 (the first differences) gives the number of G-toothpicks added at n-th stage.
a(n) is also the diameter of a circle whose circumference equals the total length of all gulls in the gullwing structure after n stages.
It appears that the gullwing pattern has a recursive, fractal-like structure. The animation shows the fractal-like behavior.
Note that the structure contains many different types of geometrical figures, for example: circles, hearts, etc. All figures are formed by arcs.
It appears that there are infinitely many types of circular shapes, which are related to the rectangles of the toothpick structure of A139250.
It also appears that the structure contains a nice pattern formed by distinct modular substructures: one central cross surrounded by several asymmetrical crosses (or "hidden crosses") of distinct sizes, and also several "nuclei" of crosses. This pattern is essentially similar to the crosses of A139250 but here the structure is harder to see. For example, consider the nucleus of a cross; in the toothpick structure a nucleus is formed by two squares and two rectangles but here a nucleus is formed by two circles and two hearts.
It appears furthermore that this structure has connections with the square-cross fractal and with the T-square fractal, just as in the case of the toothpick structure of A139250.
For more information see A139250 and A187210.
It appears this is also the connection between A147562 (the Ulam-Warburton cellular automaton) and the toothpick sequence A139250. The behavior of the function is similar to A147562 but here the structure is more complex. (see Plot 2 button: A147562 vs A187220). - Omar E. Pol, Mar 11 2011, Mar 13 2011
From Omar E. Pol, Mar 25 2011: (Start)
If we remove the first gull of the structure so we can see that there is a correspondence between the gullwing structure and the I-toothpick structure of A139250, for example: a pair of opposite gulls in horizontal position in the gullwing structure is equivalent to a vertical I-toothpick with length 4 in the I-toothpick structure, such that the midpoint of each horizontal gull coincides with the midpoint of each vertical toothpick of the I-toothpick. See A160164.
Also, B-toothpick sequence. We define a "B-toothpick" to consist of four arcs of length Pi/2 forming a "bell" similar to the Gauss function. A Bell-shaped toothpick or B-toothpick or simply "bell" is formed by four Q-toothpicks (see A187210). A B-toothpick has length 2*Pi. The sequence gives the number of B-toothpicks in the structure after n stages.
Also, if we remove the first bell of the structure, we can find a correspondence between this structure and the I-toothpick structure of A139250. In this case, for example, a pair of opposite bells in horizontal position is equivalent to a vertical I-toothpick with length 8 in the I-toothpick structure, such that the midpoint of each horizontal bell coincides with the midpoint of each vertical toothpick of the I-toothpick. See A160164.
Also, for this sequence there is a third structure formed by isosceles right triangles since gulls or bells can be replaced by these triangles.
Note that the size of the gulls, bells and triangles can be adjusted such that two or three of these structures can be overlaid.
(End)
Also, it appears that if we let k=floor(log_2(n)), then for n >= 1, a(2^k) = (4^(k+1) + 5)/3 - 2^(k+1). Otherwise, a(n)=(4^(k+1) + 5)/3 + 8*A153006(n-1-2^k). - Christopher Hohl, Dec 19 2018

Examples

			On the infinite square grid we start at stage 0 with no G-toothpicks, so a(0) = 0.
At stage 1 we place a G-toothpick:
Midpoint : (0,-1)
Endpoints: (-1,0) and (1,0)
So a(1) = 1. There are two exposed endpoints.
At stage 2 we place two G-toothpicks:
Midpoint of the left G-toothpick : (-1,0)
Endpoints of the left G-toothpick: (-2,1) and (-2,-1)
Midpoint of the right G-toothpick : (1,0)
Endpoints of the right G-toothpick: (2,1) and (2,-1)
So a(2) = 1+2 = 3. There are four exposed endpoints.
And so on...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 1}, Rest[CoefficientList[Series[(2 x / ((1 - x) (1 + 2 x))) (1+2 x Product[1 + x^(2^k - 1) + 2 x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] + 1 ]] (* Vincenzo Librandi, Jul 02 2017 *)
  • PARI
    A139250(n) = my(msb(m) = 2^(#binary(m)-1), k = (2*msb(n)^2 + 1) / 3); if(n==msb(n), k , k + 2*A139250(n-msb(n)) + A139250(n - msb(n) + 1) - 1)
    a(n) = if(n<2, n, 1 + 2*A139250(n-1)) \\ Iain Fox, Dec 10 2018
  • Python
    def msb(n):
        t=0
        while n>>t>0: t+=1
        return 2**(t - 1)
    def a139250(n):
        k=(2*msb(n)**2 + 1)//3
        return 0 if n==0 else k if n==msb(n) else k + 2*a139250(n - msb(n)) + a139250(n - msb(n) + 1) - 1
    def a(n): return 0 if n==0 else 1 + 2*a139250(n - 1)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 01 2017
    

Formula

a(n) = 1 + 2*A139250(n-1), for n >= 1.
a(n) = 1 + A160164(n-1), for n >= 1. - [Suggested by Omar E. Pol, Mar 13 2011, proved by Nathaniel Johnston, Mar 22 2011]
The formula involving A160164 can be seen by identifying a Gullwing in the n-th generation (n >= 2) with midpoint at (x,y) and endpoints at (x-1,y+1) and (x+1,y+1) with a toothpick in the (n-1)st generation with endpoints at (x,y-1) and (x,y+1) -- this toothpick from (x,y-1) to (x,y+1) should be considered as having length ONE (i.e., it is HALF of an I-toothpick). The formula involving A139250 follows as a result of the relationship between A139250 and A160164.
a(n) = A147614(n-1) + A160124(n-1), n >= 2. - Omar E. Pol, Feb 15 2013
a(n) = 7 + 8*A153000(n-3), n >= 3. - Omar E. Pol, Feb 16 2013

A160164 Number of toothpicks after n-th stage in the I-toothpick structure of A139250.

Original entry on oeis.org

0, 2, 6, 14, 22, 30, 46, 70, 86, 94, 110, 134, 158, 190, 246, 310, 342, 350, 366, 390, 414, 446, 502, 566, 606, 638, 694, 766, 846, 966, 1142, 1302, 1366, 1374, 1390, 1414, 1438, 1470, 1526, 1590, 1630, 1662, 1718, 1790
Offset: 0

Views

Author

Omar E. Pol, Jun 01 2009

Keywords

Comments

From Omar E. Pol, Mar 12 2011, Mar 15 2011, Mar 22 2011, Mar 25 2011: (Start)
We define an "I-toothpick" to consist of two connected toothpicks, as a bar of length 2. An I-toothpick with length 2 is formed by two toothpicks with length 1.
Note that in the physical model of the toothpick structure of A139250 the midpoint of a wooden toothpick of the new generation is superimposed on the endpoint of a wooden toothpick of the old generation. However, in the physical model of the I-toothpick structure the wooden toothpicks are not overlapping because all wooden toothpicks are connected by their endpoints.
a(n) is also the number of components after n-th stage in the toothpick structure of A139250, assuming the toothpicks have length 2.
Also, gullwing sequence starting from two opposite "gulls" (as a reflected gull in flight) such that the distance between their midpoints is equal to 2 (See A187220). The sequence gives the number of gulls in the structure after n-th stage.
Note that there is a correspondence between the gullwing structure and the I-toothpick structure, for example: a pair of opposite gulls in horizontal position in the gullwing structure is equivalent to a vertical I-toothpick with length 4 in the I-toothpick structure, such that the midpoint of each horizontal gull coincides with the midpoint of each vertical toothpick of the I-toothpick.
It appears this is also the connection between A147562 (the Ulam-Warburton cellular automaton) and the toothpick sequence A139250. The behavior of the function is similar to A147562 but here the structure is more complex. See Plot 2 button: A147562 vs A160164. See also A147562 vs A187220.
Also, B-toothpick sequence starting from two opposite "bells" such that the distance between their midpoints is equal to 4 (See A187220). We define a "B-toothpick" to consist of four arcs of length Pi/2 forming a "bell" similar to the Gauss function. A bell-shaped toothpick or B-toothpick or simply "bell" is formed by four Q-toothpicks (see A187210). A B-toothpick has length 2*Pi. The sequence gives the number of bells in the structure after n stages.
We can see a correspondence between this structure and the I-toothpick structure of A139250. In this case, for example, a pair of opposite bells in horizontal position is equivalent to a vertical I-toothpick with length 8 in the I-toothpick structure, such that the midpoint of each horizontal bell coincides with the midpoint of each vertical toothpick of the I-toothpick.
Also, there is a fourth structure formed by isosceles right triangles, starting from two opposite triangles, since gulls or bells can be replaced by this type of triangles.
Note that the size of the toothpicks, gulls, bells and isosceles right triangles can be adjusted such that two or more of these structures can be overlaid.
(End)
The graph of this sequence is very close to the graphs of both A147562 and A169707 (see Plot 2). - Omar E. Pol, Feb 16 2015
It appears that a(n) is also the total number of ON cells after n-th stage in the half structure of the cellular automaton described in A169707 plus the total number of ON cells after n+1 stages in the half structure of the mentioned cellular automaton, without its central cell. See the illustration of the NW-NE-SE-SW version in A169707. - Omar E. Pol, Jul 26 2015
On the infinite Cairo pentagonal tiling consider the symmetric figure formed by two non-adjacent pentagons connected by a line segment joining two trivalent nodes. At stage 1 we start with one of these figures turned ON. a(n) is the number of ON cells in the structure after n-th stage, so a(1) = 2. The rule for the next stages is that the concave part of the figures of the new generation must be adjacent to the complementary convex part of the figures of the old generation. - Omar E. Pol, Mar 29 2018

Examples

			From _Omar E. Pol_, Aug 12 2013: (Start)
Illustration of initial terms:
.                                           _ _     _ _
.                     _ _ _ _   |_ _ _ _|    |_ _ _ _|
.       _ _   |_ _|    |_ _|    | |_ _| |   _|_|_ _|_|_
.   |    |    | | |    | | |      | | |        | | |
.   |   _|_   |_|_|    |_|_|      |_|_|     _ _|_|_|_ _
.             |   |   _|_ _|_   |_|_ _|_|    |_|_ _|_|
.                               |       |   _|_     _|_
.
.   2    6      14       22         30           46
.
(End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x / ((1 - x) (1 + 2 x))) (1 + 2 x Product[1 + x^(2^k - 1) + 2 x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] (* Vincenzo Librandi, Feb 15 2015 *)

Formula

a(n) = 2*A139250(n).
a(n) = A187220(n+1) - 1. - Omar E. Pol, Mar 12 2011, Mar 22 2011
It appears that a(n) = A169707(n) + A170903(n), n >= 1. - Omar E. Pol, Feb 15 2015
It appears that a(n) = (A169707(n) - 1)/2 + (A169707(n+1) - 1)/2, n >= 1. - Omar E. Pol, Jul 24 2015

Extensions

Zero inserted, more terms and edited by Omar E. Pol, Mar 12 2011

A211000 Coordinates (x,y) of the endpoint of a structure (or curve) formed by Q-toothpicks in which the inflection points are the prime numbers A000040.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 3, -1, 4, -2, 3, -3, 2, -4, 3, -5, 4, -6, 3, -7, 2, -6, 3, -5, 4, -4, 3, -3, 2, -2, 3, -1, 4, -2, 3, -3, 2, -4, 3, -5, 4, -6, 3, -7, 2, -6, 3, -5, 4, -4, 3, -3, 2, -4, 3, -5, 4, -4, 3, -3, 2, -2, 3, -1, 4, 0, 3, 1, 2, 0, 3, -1, 4, 0
Offset: 0

Views

Author

Omar E. Pol, Mar 30 2012

Keywords

Comments

On the infinite square grid the structure looks like a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure. The values on the axis "x" are easy to predict (see A211010). On the other hand the values on the axis "y" do not seem to be predictable (see A211011). This is a member of the family of the structures or curves mentioned in A210838. The odd numbers > 1 are located on the main axis of the structure. Note that here the Q-toothpicks can be superposed. For the definition of Q-toothpicks see A187210. A211021 gives the number of stage where a new circle appears in the structure. For the number of circles after the n-th stage see A211020. For the location of the centers of the circles see A211022. For the sums of the visible nodes after the n-th stage see A211024.

Examples

			We start at stage 0 with no Q-toothpicks.
At stage 1 we place a Q-toothpick centered at (1,0) with its endpoints at (0,0) and (1,1).
At stage 2 we place a Q-toothpick centered at (1,0) with its endpoints at (1,1) and (2,0). Since 2 is a prime number we have that the end of the curve is also an inflection point.
At stage 3 we place a Q-toothpick centered at (3,0) with its endpoints at (2,0) and (3,-1). Since 3 is a prime number we have that the end of the curve is also an inflection point.
At stage 4 we place a Q-toothpick centered at (3,-2) with its endpoints at (3,-1) and (4,-2).
-------------------------------------
.                    The end as
.          Pair      inflection
n        (x    y)      point
-------------------------------
0         0,   0,        -
1         1,   1,        -
2         2,   0,       Yes
3         3,  -1,       Yes
4         4,  -2,        -
5         3,  -3,       Yes
6         2,  -4,        -
7         3,  -5,       Yes
8         4,  -6,        -
9         3,  -7,        -
10        2,  -6,        -
11        3,  -5,       Yes
...
Illustration of the nodes of the structure:
-----------------------------------------------------
After 9 stages    After 10 stages    After 11 stages
-----------------------------------------------------
.
.    1                 1                  1
.  0   2             0   2              0   2
.        3                 3                  3
.          4                 4                  4
.        5                 5                  5
.      6                 6                  6
.        7                 7                 11
.          8            10   8             10   8
.        9                 9                  9
.
		

Crossrefs

Programs

  • Mathematica
    A211000[nmax_]:=Module[{walk={{0,0}},angle=3/4Pi,turn=Pi/2},Do[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];AppendTo[walk,AngleVector[Last[walk],{Sqrt[2],angle}]],{n,0,nmax-1}];walk];
    A211000[100] (* Generates 101 coordinate pairs *) (* Paolo Xausa, Aug 23 2022 *)
  • PARI
    A211000(nmax) = my(walk=vector(nmax+1), turn=1, p1, p2); walk[1]=[0,0];if(nmax==0,return(walk));walk[2]=[1,1];for(n=1, nmax-1, p1=walk[n];p2=walk[n+1];if(isprime(n),walk[n+2]=[2*p2[1]-p1[1],2*p2[2]-p1[2]],if(n>5 && isprime(n-1), turn*=-1);walk[n+2]=[p2[1]-turn*(p1[2]-p2[2]),p2[2]+turn*(p1[1]-p2[1])]));walk;
    A211000(100) \\ Generates 101 coordinate pairs - Paolo Xausa, Sep 22 2022
    
  • Python
    from sympy import isprime
    def A211000(nmax):
        walk, turn = [(0,0),(1,1)], 1
        for n in range(1,nmax):
            p1, p2 = walk[-2], walk[-1]
            if isprime(n): # Go straight
                walk.append((2*p2[0]-p1[0],2*p2[1]-p1[1]))
            else:          # Turn
                if n>5 and isprime(n-1): turn *= -1
                walk.append((p2[0]-turn*(p1[1]-p2[1]),p2[1]+turn*(p1[0]-p2[0])))
        return walk[:nmax+1]
    print(A211000(100)) # Generates 101 coordinate pairs - Paolo Xausa, Sep 22 2022

A211020 Number of circles in the structure of A211000 after n-th stage.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Omar E. Pol, Mar 30 2012

Keywords

Comments

For n >= 13 the structure looks like essentially a column of tangent circles of radius 1. The circles are centered on a straight line which is parallel to the axis "y". The structure arises from the prime numbers A000040.

Examples

			From _Paolo Xausa_, Jan 09 2023: (Start)
In the following diagrams the A211000 structure is shown at the end of the n-th stage (Q-toothpicks are depicted as straight lines instead of circle arcs; circles are depicted as rhombi).
n       0       5      11      13      15      34      41      65
a(n)    0       0       1       2       3       4       5       6
.
                                                                /\
                                                                \/
                                                                 \
                                                                 /
                                                        /\      /\
                                                        \/      \/
              /\      /\      /\      /\      /\/\    /\/\    /\/\
                \       \       \       \       \/      \/      \/
                 \       \       \      /\      /\      /\      /\
                 /       /       /      \/      \/      \/      \/
                        /       /\      /\      /\      /\      /\
                        \       \/      \/      \/      \/      \/
                        /\      /\      /\      /\      /\      /\
                        \/      \/      \/      \/      \/      \/
(End)
		

Crossrefs

Programs

  • Mathematica
    A211020[nmax_]:=Module[{ep={{0, 0}}, angle=3/4Pi, turn=Pi/2, cells}, Join[{0}, Table[If[!PrimeQ[n], If[n>5&&PrimeQ[n-1], turn*=-1]; angle-=turn]; AppendTo[ep, AngleVector[Last[ep], {Sqrt[2], angle}]]; cells=FindCycle[Graph[MapApply[UndirectedEdge, Partition[ep, 2, 1]]], {4}, All]; CountDistinct[Map[Sort, Map[First, cells, {2}]]], {n, 0, nmax-1}]]];
    A211020[100] (* Paolo Xausa, Jan 06 2023 *)

Extensions

Offset changed to 0 and a(0) prepended by Paolo Xausa, Jan 06 2023

A211011 Value on the axis "y" of the endpoint of the structure (or curve) of A211000 at n-th stage.

Original entry on oeis.org

0, 1, 0, -1, -2, -3, -4, -5, -6, -7, -6, -5, -4, -3, -2, -1, -2, -3, -4, -5, -6, -7, -6, -5, -4, -3, -4, -5, -4, -3, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 7, 6, 5
Offset: 0

Views

Author

Omar E. Pol, Mar 30 2012

Keywords

Comments

For n >= 13 the structure of A211000 looks like essentially a column of tangent circles of radius 1. The structure arises from the prime numbers A000040. The behavior seems to be as modular arithmetic but in a growing structure. Note that all odd numbers > 1 are located on the main axis of the structure. For the number of circles after n-th stage see A211020. For the values on the axis "x" see A211010. For the values for the n-th prime see A211023.

Examples

			Consider the illustration of the structure of A211000:
------------------------------------------------------
.           After           After            After
.  y      9 stages        10 stages        11 stages
------------------------------------------------------
.  2
.  1        1               1                1
.  0      0   2           0   2            0   2
. -1            3               3                3
. -2              4               4                4
. -3            5               5                5
. -4          6               6                6
. -5            7               7               11
. -6              8          10   8           10   8
. -7            9               9                9
. -8
We can see that a(7) = a(11) = -5.
		

Crossrefs

Programs

  • Mathematica
    A211011[nmax_]:=Module[{ep={0,0},angle=3/4Pi,turn=Pi/2},Join[{0},Table[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];Last[ep=AngleVector[ep,{Sqrt[2],angle}]],{n,0,nmax-1}]]];
    A211011[100] (* Paolo Xausa, Jan 14 2023 *)

Formula

abs(a(n)-a(n+1)) = 1.
Showing 1-10 of 32 results. Next