cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A014479 Exponential generating function = (1+2*x)/(1-2*x)^3.

Original entry on oeis.org

1, 8, 72, 768, 9600, 138240, 2257920, 41287680, 836075520, 18579456000, 449622835200, 11771943321600, 331576403558400, 9998303861145600, 321374052679680000, 10969567664799744000, 396275631890890752000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(add(count(Composition(k))*count(Permutation(k)),k=1..n),n=1..17); # Zerinvary Lajos, Oct 17 2006
    seq(2^n*(n+1)^2*n!, n=0..30); # Robert Israel, Oct 28 2015
  • Mathematica
    Table[2^n (n+1)^2 n!, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
  • PARI
    {a(n)=polcoeff( sum(m=0,n,(2*m+1)^(m+1)*x^m / (1 + (2*m+1)*x +x*O(x^n))^(m+1)),n)} \\ Paul D. Hanna, Jan 02 2013
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    vector(30, n, n--; n!*(n+1)^2*2^n) \\ Altug Alkan, Oct 28 2015

Formula

a(n) = A014477(n) * n!. - Franklin T. Adams-Watters, Nov 02 2006
G.f.: Sum_{n>=0} (2*n+1)^(n+1) * x^n / (1 + (2*n+1)*x)^(n+1). - Paul D. Hanna, Jan 02 2013
From Vladimir Reshetnikov, Oct 28 2015: (Start)
a(n) = 2^n*(n+1)^2*n!.
Recurrence: a(0) = 1, n*a(n) = 2*(n+1)^2*a(n-1). (End)
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*(Ei(1/2) - gamma + log(2)), where Ei(x) is the exponential integral and gamma is Euler's constant (A001620).
Sum_{n>=0} (-1)^n/a(n) = 2*(gamma - Ei(-1/2) - gamma - log(2)). (End)

A187738 G.f.: Sum_{n>=0} (3*n+1)^n * x^n / (1 + (3*n+1)*x)^n.

Original entry on oeis.org

1, 4, 33, 378, 5508, 97200, 2012040, 47764080, 1278607680, 38093690880, 1249949232000, 44783895340800, 1739500776921600, 72804471541401600, 3266273336880153600, 156364149105964800000, 7955807906511489024000, 428712969452770050048000, 24390705726366524633088000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

More generally,
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.

Examples

			G.f.: A(x) = 1 + 4*x + 33*x^2 + 378*x^3 + 5508*x^4 + 97200*x^5 +...
where
A(x) = 1 + 4*x/(1+4*x) + 7^2*x^2/(1+7*x)^2 + 10^3*x^3/(1+10*x)^3 + 13^4*x^4/(1+13*x)^4 + 16^5*x^5/(1+16*x)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,((3*m+1)*x)^m/(1+(3*m+1)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (3*n+5) * 3^(n-1) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 - 4*x + 3*x^2) / (2*(1-3*x)^2).

A187739 G.f.: Sum_{n>=0} (3*n+2)^n * x^n / (1 + (3*n+2)*x)^n.

Original entry on oeis.org

1, 5, 39, 432, 6156, 106920, 2187000, 51438240, 1366787520, 40474546560, 1321374902400, 47140942464000, 1824354473356800, 76113765702374400, 3405263691641011200, 162618715070203392000, 8256027072794941440000, 444024146933226123264000, 25217509310311152586752000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

More generally,
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.

Examples

			G.f.: A(x) = 1 + 5*x + 39*x^2 + 432*x^3 + 6156*x^4 + 106920*x^5 +...
where
A(x) = 1 + 5*x/(1+5*x) + 8^2*x^2/(1+8*x)^2 + 11^3*x^3/(1+11*x)^3 + 14^4*x^4/(1+14*x)^4 + 17^5*x^5/(1+17*x)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,((3*m+2)*x)^m/(1+(3*m+2)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (3*n+7) * 3^(n-1) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 - 2*x - 3*x^2) / (2*(1-3*x)^2).

A187740 G.f.: Sum_{n>=0} (5*n+1)^n * x^n / (1 + (5*n+1)*x)^n.

Original entry on oeis.org

1, 6, 85, 1650, 40500, 1200000, 41625000, 1653750000, 74025000000, 3685500000000, 201993750000000, 12084187500000000, 783523125000000000, 54729675000000000000, 4097124281250000000000, 327237848437500000000000, 27775310062500000000000000, 2496585341250000000000000000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 6*x + 85*x^2 + 1650*x^3 + 40500*x^4 + 1200000*x^5 +...
where
A(x) = 1 + 6*x/(1+6*x) + 11^2*x^2/(1+11*x)^2 + 16^3*x^3/(1+16*x)^3 + 21^4*x^4/(1+21*x)^4 + 26^5*x^5/(1+26*x)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n, ((5*m+1)*x)^m/(1+(5*m+1)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (5*n+7) * 5^(n-1) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 - 8*x + 15*x^2) / (2*(1-5*x)^2).

A187741 G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

This is an enumeration of the disjoint union (with repetition) of A001710(n), for n > 0, and A000142(n), for n > 0. The first lists the orders of the alternating groups; the second lists the orders of the symmetric groups. - Hal M. Switkay, Mar 13 2023

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/2 + (1+2*x) * Sum_{n>=0} (n+1)!*x^(2*n)/2.
a(2*n) = (n+1)!/2, a(2*n-1) = n!, for n>0 with a(0)=1.
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 3*e - 4.
Sum_{n>=0} (-1)^n/a(n) = e - 2. (End)

A221160 G.f.: Sum_{n>=0} (4*n+1)^n * x^n / (1 + (4*n+1)*x)^n.

Original entry on oeis.org

1, 5, 56, 864, 16896, 399360, 11059200, 350945280, 12551454720, 499415777280, 21879167385600, 1046394961920000, 54245114825932800, 3029690116944691200, 181363518724689100800, 11583863454028529664000, 786298610212845649920000, 56523637237014847291392000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 39*x^2 + 432*x^3 + 6156*x^4 + 106920*x^5 +...
where
A(x) = 1 + 5*x/(1+5*x) + 9^2*x^2/(1+9*x)^2 + 13^3*x^3/(1+13*x)^3 + 17^4*x^4/(1+17*x)^4 + 21^5*x^5/(1+21*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (2*n + 3)*4^(n - 1)*n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,((4*m+1)*x)^m/(1+(4*m+1)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (2*n+3) * 4^(n-1) * n! for n>0 with a(0)=1.
E.g.f.: (1 - 3*x + 4*x^2) / (1-4*x)^2.
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = 8*exp(1/4) - 1/3 - 8*sqrt(Pi)*erfi(1/2), where erfi is the imaginary error function.
Sum_{n>=0} (-1)^n/a(n) = 8*sqrt(Pi)*erf(1/2) - 8/exp(1/4) - 1/3, where erf is the error function. (End)

A221161 G.f.: Sum_{n>=0} (4*n+3)^n * x^n / (1 + (4*n+3)*x)^n.

Original entry on oeis.org

1, 7, 72, 1056, 19968, 460800, 12533760, 392232960, 13872660480, 546979184640, 23781703680000, 1130106558873600, 58263271479705600, 3238634262940876800, 193064390900475494400, 12285915784575713280000, 831229959367865401344000, 59578968979556190388224000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 72*x^2 + 1056*x^3 + 19968*x^4 + 460800*x^5 +...
where
A(x) = 1 + 7*x/(1+7*x) + 11^2*x^2/(1+11*x)^2 + 15^3*x^3/(1+15*x)^3 + 19^4*x^4/(1+19*x)^4 + 23^5*x^5/(1+23*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (2*n + 5)*4^(n - 1)*n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,((4*m+3)*x)^m/(1+(4*m+3)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (2*n+5) * 4^(n-1) * n! for n>0 with a(0)=1.
E.g.f.: (1 - x - 4*x^2) / (1-4*x)^2.
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = 48*sqrt(Pi)*erfi(1/2) - 40*exp(1/4) + 1/5, where erfi is the imaginary error function.
Sum_{n>=0} (-1)^n/a(n) = 48*sqrt(Pi)*erf(1/2) - 56/exp(1/4) + 1/5, where erf is the error function. (End)

A187742 G.f.: Sum_{n>=0} (n+x)^n * x^n / (1 + n*x + x^2)^n.

Original entry on oeis.org

1, 1, 4, 14, 66, 384, 2640, 20880, 186480, 1854720, 20321280, 243129600, 3153427200, 44068147200, 660064204800, 10548573235200, 179151388416000, 3222109642752000, 61178237632512000, 1222853377794048000, 25667116186263552000, 564433265896980480000, 12977099311614197760000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

For values of n between 3 and 11 (possibly continuing) the number of conjugacy classes of the symmetric group S_n when conjugating by a single transposition. - Attila Egri-Nagy, Aug 15 2014

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 384*x^5 + 2640*x^6 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (2+x)^2*x^2/(1+2*x+x^2)^2 + (3+x)^3*x^3/(1+3*x+x^2)^3 + (4+x)^4*x^4/(1+4*x+x^2)^4 + (5+x)^5*x^5/(1+5*x+x^2)^5 +...
		

Crossrefs

Programs

  • GAP
    List([3..11], n->Size(OrbitsDomain(Group((1,2)),SymmetricGroup(IsPermGroup, n), \^))); # Attila Egri-Nagy, Aug 15 2014
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := (n^2 + n + 2)*(n - 1)!/2; Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Aug 15 2014 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, (m+x)^m*x^m/(1+m*x+x^2 +x*O(x^n))^m), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n>=0&n<=1,1,(n^2+n+2)*(n-1)!/2)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) - x - log(1-x +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    x='x+O('x^66); concat([1], Vec(serlaplace(1/(1-x)^3 + x/(1-x)))) \\ Joerg Arndt, Aug 15 2014
    

Formula

a(n) = (n^2+n+2) * (n-1)!/2, for n>1 with a(0)=a(1)=1.
E.g.f.: 1/2 + 1/(2*(1-x)^2) - x - log(1-x).
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 1/(1-x)^3 + x/(1-x).

A229039 G.f.: Sum_{n>=0} (n+2)^n * x^n / (1 + (n+2)*x)^n.

Original entry on oeis.org

1, 3, 7, 24, 108, 600, 3960, 30240, 262080, 2540160, 27216000, 319334400, 4071513600, 56043187200, 828193766400, 13076743680000, 219689293824000, 3912561709056000, 73627297615872000, 1459741204905984000, 30411275102208000000, 664182248232222720000
Offset: 0

Views

Author

Paul D. Hanna, Sep 11 2013

Keywords

Comments

More generally, we have the identity:
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.

Examples

			O.g.f.: A(x) = 1 + 3*x + 7*x^2 + 24*x^3 + 108*x^4 + 600*x^5 + 3960*x^6 +...
where
A(x) = 1 + 3*x/(1+3*x) + 4^2*x^2/(1+4*x)^2 + 5^3*x^3/(1+5*x)^3 + 6^4*x^4/(1+6*x)^4 + 7^5*x^5/(1+7*x)^5 +...
E.g.f.: E(x) = 1 + 3*x + 7*x^2/2! + 24*x^3/3! + 108*x^4/4! + 600*x^5/5! +...
where
E(x) = 1 + 3*x + 7/2*x^2 + 4*x^3 + 9/2*x^4 + 5*x^5 + 11/2*x^6 + 6*x^7 +...
which is the expansion of: (2 + 2*x - 3*x^2) / (2 - 4*x + 2*x^2).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (n + 5)*n!/2; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 11 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, ((m+2)*x)^m / (1 + (m+2)*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1, (n+5) * n!/2 )}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (n+5) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 + 2*x - 3*x^2)/(2*(1-x)^2).
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 18*e - 237/5.
Sum_{n>=0} (-1)^n/a(n) = 243/5 - 130/e. (End)

A187746 G.f.: Sum_{n>=0} (2*n+x)^n * x^n / (1 + 2*n*x + x^2)^n.

Original entry on oeis.org

1, 2, 13, 100, 984, 11712, 163200, 2603520, 46771200, 934133760, 20530298880, 492355584000, 12793813401600, 358063276032000, 10737974299852800, 343513154086502400, 11676590580695040000, 420271561157640192000, 15967576932074127360000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 100*x^3 + 984*x^4 + 11712*x^5 +...
where
A(x) = 1 + (2+x)*x/(1+2*x+x^2) + (4+x)^2*x^2/(1+4*x+x^2)^2 + (6+x)^3*x^3/(1+6*x+x^2)^3 + (8+x)^4*x^4/(1+8*x+x^2)^4 + (10+x)^5*x^5/(1+10*x+x^2)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, (2*m+x)^m*x^m/(1+2*m*x+x^2 +x*O(x^n))^m), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1,if(n==1,2,(2*n^2+2*n+1)*2^(n-2)*(n-1)!))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x +x*O(x^n))/4, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = (2*n^2+2*n+1) * 2^(n-2) * (n-1)! for n>1 with a(0)=1, a(1)=2.
E.g.f.: 1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x)/4.
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 2/(1-2*x)^3 + x/(1-2*x).
Showing 1-10 of 15 results. Next