A014479
Exponential generating function = (1+2*x)/(1-2*x)^3.
Original entry on oeis.org
1, 8, 72, 768, 9600, 138240, 2257920, 41287680, 836075520, 18579456000, 449622835200, 11771943321600, 331576403558400, 9998303861145600, 321374052679680000, 10969567664799744000, 396275631890890752000
Offset: 0
-
seq(add(count(Composition(k))*count(Permutation(k)),k=1..n),n=1..17); # Zerinvary Lajos, Oct 17 2006
seq(2^n*(n+1)^2*n!, n=0..30); # Robert Israel, Oct 28 2015
-
Table[2^n (n+1)^2 n!, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
-
{a(n)=polcoeff( sum(m=0,n,(2*m+1)^(m+1)*x^m / (1 + (2*m+1)*x +x*O(x^n))^(m+1)),n)} \\ Paul D. Hanna, Jan 02 2013
for(n=0,20,print1(a(n),", "))
-
vector(30, n, n--; n!*(n+1)^2*2^n) \\ Altug Alkan, Oct 28 2015
A187738
G.f.: Sum_{n>=0} (3*n+1)^n * x^n / (1 + (3*n+1)*x)^n.
Original entry on oeis.org
1, 4, 33, 378, 5508, 97200, 2012040, 47764080, 1278607680, 38093690880, 1249949232000, 44783895340800, 1739500776921600, 72804471541401600, 3266273336880153600, 156364149105964800000, 7955807906511489024000, 428712969452770050048000, 24390705726366524633088000
Offset: 0
G.f.: A(x) = 1 + 4*x + 33*x^2 + 378*x^3 + 5508*x^4 + 97200*x^5 +...
where
A(x) = 1 + 4*x/(1+4*x) + 7^2*x^2/(1+7*x)^2 + 10^3*x^3/(1+10*x)^3 + 13^4*x^4/(1+13*x)^4 + 16^5*x^5/(1+16*x)^5 +...
-
{a(n)=polcoeff(sum(m=0,n,((3*m+1)*x)^m/(1+(3*m+1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
A187739
G.f.: Sum_{n>=0} (3*n+2)^n * x^n / (1 + (3*n+2)*x)^n.
Original entry on oeis.org
1, 5, 39, 432, 6156, 106920, 2187000, 51438240, 1366787520, 40474546560, 1321374902400, 47140942464000, 1824354473356800, 76113765702374400, 3405263691641011200, 162618715070203392000, 8256027072794941440000, 444024146933226123264000, 25217509310311152586752000
Offset: 0
G.f.: A(x) = 1 + 5*x + 39*x^2 + 432*x^3 + 6156*x^4 + 106920*x^5 +...
where
A(x) = 1 + 5*x/(1+5*x) + 8^2*x^2/(1+8*x)^2 + 11^3*x^3/(1+11*x)^3 + 14^4*x^4/(1+14*x)^4 + 17^5*x^5/(1+17*x)^5 +...
-
{a(n)=polcoeff(sum(m=0,n,((3*m+2)*x)^m/(1+(3*m+2)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
A187740
G.f.: Sum_{n>=0} (5*n+1)^n * x^n / (1 + (5*n+1)*x)^n.
Original entry on oeis.org
1, 6, 85, 1650, 40500, 1200000, 41625000, 1653750000, 74025000000, 3685500000000, 201993750000000, 12084187500000000, 783523125000000000, 54729675000000000000, 4097124281250000000000, 327237848437500000000000, 27775310062500000000000000, 2496585341250000000000000000
Offset: 0
G.f.: A(x) = 1 + 6*x + 85*x^2 + 1650*x^3 + 40500*x^4 + 1200000*x^5 +...
where
A(x) = 1 + 6*x/(1+6*x) + 11^2*x^2/(1+11*x)^2 + 16^3*x^3/(1+16*x)^3 + 21^4*x^4/(1+21*x)^4 + 26^5*x^5/(1+26*x)^5 +...
-
{a(n)=polcoeff(sum(m=0, n, ((5*m+1)*x)^m/(1+(5*m+1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
A187741
G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
-
a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
for(n=0, 30, print1(a(n), ", "))
A221160
G.f.: Sum_{n>=0} (4*n+1)^n * x^n / (1 + (4*n+1)*x)^n.
Original entry on oeis.org
1, 5, 56, 864, 16896, 399360, 11059200, 350945280, 12551454720, 499415777280, 21879167385600, 1046394961920000, 54245114825932800, 3029690116944691200, 181363518724689100800, 11583863454028529664000, 786298610212845649920000, 56523637237014847291392000
Offset: 0
G.f.: A(x) = 1 + 5*x + 39*x^2 + 432*x^3 + 6156*x^4 + 106920*x^5 +...
where
A(x) = 1 + 5*x/(1+5*x) + 9^2*x^2/(1+9*x)^2 + 13^3*x^3/(1+13*x)^3 + 17^4*x^4/(1+17*x)^4 + 21^5*x^5/(1+21*x)^5 +...
-
a[n_] := (2*n + 3)*4^(n - 1)*n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
-
{a(n)=polcoeff(sum(m=0,n,((4*m+1)*x)^m/(1+(4*m+1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
A221161
G.f.: Sum_{n>=0} (4*n+3)^n * x^n / (1 + (4*n+3)*x)^n.
Original entry on oeis.org
1, 7, 72, 1056, 19968, 460800, 12533760, 392232960, 13872660480, 546979184640, 23781703680000, 1130106558873600, 58263271479705600, 3238634262940876800, 193064390900475494400, 12285915784575713280000, 831229959367865401344000, 59578968979556190388224000
Offset: 0
G.f.: A(x) = 1 + 7*x + 72*x^2 + 1056*x^3 + 19968*x^4 + 460800*x^5 +...
where
A(x) = 1 + 7*x/(1+7*x) + 11^2*x^2/(1+11*x)^2 + 15^3*x^3/(1+15*x)^3 + 19^4*x^4/(1+19*x)^4 + 23^5*x^5/(1+23*x)^5 +...
-
a[n_] := (2*n + 5)*4^(n - 1)*n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
-
{a(n)=polcoeff(sum(m=0,n,((4*m+3)*x)^m/(1+(4*m+3)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
A187742
G.f.: Sum_{n>=0} (n+x)^n * x^n / (1 + n*x + x^2)^n.
Original entry on oeis.org
1, 1, 4, 14, 66, 384, 2640, 20880, 186480, 1854720, 20321280, 243129600, 3153427200, 44068147200, 660064204800, 10548573235200, 179151388416000, 3222109642752000, 61178237632512000, 1222853377794048000, 25667116186263552000, 564433265896980480000, 12977099311614197760000
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 384*x^5 + 2640*x^6 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (2+x)^2*x^2/(1+2*x+x^2)^2 + (3+x)^3*x^3/(1+3*x+x^2)^3 + (4+x)^4*x^4/(1+4*x+x^2)^4 + (5+x)^5*x^5/(1+5*x+x^2)^5 +...
-
List([3..11], n->Size(OrbitsDomain(Group((1,2)),SymmetricGroup(IsPermGroup, n), \^))); # Attila Egri-Nagy, Aug 15 2014
-
a[0] = 1; a[1] = 1; a[n_] := (n^2 + n + 2)*(n - 1)!/2; Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Aug 15 2014 *)
-
{a(n)=polcoeff( sum(m=0, n, (m+x)^m*x^m/(1+m*x+x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n>=0&n<=1,1,(n^2+n+2)*(n-1)!/2)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) - x - log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
x='x+O('x^66); concat([1], Vec(serlaplace(1/(1-x)^3 + x/(1-x)))) \\ Joerg Arndt, Aug 15 2014
A229039
G.f.: Sum_{n>=0} (n+2)^n * x^n / (1 + (n+2)*x)^n.
Original entry on oeis.org
1, 3, 7, 24, 108, 600, 3960, 30240, 262080, 2540160, 27216000, 319334400, 4071513600, 56043187200, 828193766400, 13076743680000, 219689293824000, 3912561709056000, 73627297615872000, 1459741204905984000, 30411275102208000000, 664182248232222720000
Offset: 0
O.g.f.: A(x) = 1 + 3*x + 7*x^2 + 24*x^3 + 108*x^4 + 600*x^5 + 3960*x^6 +...
where
A(x) = 1 + 3*x/(1+3*x) + 4^2*x^2/(1+4*x)^2 + 5^3*x^3/(1+5*x)^3 + 6^4*x^4/(1+6*x)^4 + 7^5*x^5/(1+7*x)^5 +...
E.g.f.: E(x) = 1 + 3*x + 7*x^2/2! + 24*x^3/3! + 108*x^4/4! + 600*x^5/5! +...
where
E(x) = 1 + 3*x + 7/2*x^2 + 4*x^3 + 9/2*x^4 + 5*x^5 + 11/2*x^6 + 6*x^7 +...
which is the expansion of: (2 + 2*x - 3*x^2) / (2 - 4*x + 2*x^2).
-
a[n_] := (n + 5)*n!/2; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Dec 11 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, ((m+2)*x)^m / (1 + (m+2)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=if(n==0,1, (n+5) * n!/2 )}
for(n=0, 20, print1(a(n), ", "))
A187746
G.f.: Sum_{n>=0} (2*n+x)^n * x^n / (1 + 2*n*x + x^2)^n.
Original entry on oeis.org
1, 2, 13, 100, 984, 11712, 163200, 2603520, 46771200, 934133760, 20530298880, 492355584000, 12793813401600, 358063276032000, 10737974299852800, 343513154086502400, 11676590580695040000, 420271561157640192000, 15967576932074127360000
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 100*x^3 + 984*x^4 + 11712*x^5 +...
where
A(x) = 1 + (2+x)*x/(1+2*x+x^2) + (4+x)^2*x^2/(1+4*x+x^2)^2 + (6+x)^3*x^3/(1+6*x+x^2)^3 + (8+x)^4*x^4/(1+8*x+x^2)^4 + (10+x)^5*x^5/(1+10*x+x^2)^5 +...
-
{a(n)=polcoeff( sum(m=0, n, (2*m+x)^m*x^m/(1+2*m*x+x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n==0,1,if(n==1,2,(2*n^2+2*n+1)*2^(n-2)*(n-1)!))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x +x*O(x^n))/4, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-10 of 15 results.
Comments