cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A220181 E.g.f.: Sum_{n>=0} (1 - exp(-n*x))^n.

Original entry on oeis.org

1, 1, 7, 115, 3451, 164731, 11467387, 1096832395, 138027417451, 22111390122811, 4393756903239067, 1060590528331645675, 305686632592587314251, 103695663062502304228891, 40895823706632785802087547, 18554695374154504939196298955, 9596336362873294022956267703851
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Comments

Compare to the trivial identity: exp(x) = Sum_{n>=0} (1 - exp(-x))^n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.
From Arvind Ayyer, Oct 25 2020: (Start)
a(n) is also the number of acyclic orientations with unique sink of the complete bipartite graph K_{n,n+1}
a(n) is also the number of toppleable permutations in S_{2n}. A toppleable permutation pi in S_{2n} satisfies pi_i <= n-1+i for 1 <= i <= n+1 and pi_i >= i-n for n+2 <= i <= 2n. (End)
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1 ...], with an apparent period of 6. Cf. A122399. - Peter Bala, Jun 01 2022

Examples

			O.g.f.: F(x) = 1 + x + 7*x^2 + 115*x^3 + 3451*x^4 + 164731*x^5 +...
where F(x) = 1 + x/(1+x) + 2^2*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^3*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^4*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +...
...
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 115*x^3/3! + 3451*x^4/4! + 164731*x^5/5! +...
where the e.g.f. satisfies the identities:
(1) A(x) = 1 + (1-exp(-x)) + (1-exp(-2*x))^2 + (1-exp(-3*x))^3 + (1-exp(-4*x))^4 + (1-exp(-5*x))^5 + (1-exp(-6*x))^6 +...
(2) A(x) = exp(-x) + exp(-2*x)*(1-exp(-2*x)) + exp(-3*x)*(1-exp(-3*x))^2 + exp(-4*x)*(1-exp(-4*x))^3 + exp(-5*x)*(1-exp(-5*x))^4 + exp(-6*x)*(1-exp(-6*x))^5 +...
(3) 2*A(x) = 2 + (1-exp(-2*x)) + (1-exp(-3*x))^2 + (1-exp(-4*x))^3 + (1-exp(-5*x))^4 + (1-exp(-6*x))^5 + (1-exp(-7*x))^6 +...
E.g.f. at offset=1 begins:
B(x) = x + x^2/2! + 7*x^3/3! + 115*x^4/4! + 3451*x^5/5! + 164731*x^6/6! +...
where
B(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2^2 + (1-exp(-3*x))^3/3^2 + (1-exp(-4*x))^4/4^2 + (1-exp(-5*x))^5/5^2 + (1-exp(-6*x))^6/6^2 +...
The series  B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2  may be rewritten as:
B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{n>=2} (n-1)*exp(-2*n*x)/(2*n) -
Sum_{n>=3} C(n-1,2)*exp(-3*n*x)/(3*n) + Sum_{n>=4} C(n-1,3)*exp(-4*n*x)/(4*n) -+...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(-1)^(n-k)*k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*m!*x^m/prod(k=1,m,1+m*k*x+x*O(x^n))),n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k*x+x*O(x^n)))^k), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for this sequence with offset=1: */
    {a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k*x+x*O(x^n)))^k/k^2), n)}
    for(n=1, 21, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = sum(k=0,n,(-1)^(n-k)*k^n*k!*Stirling2(n, k))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0,1,sum(k=1,n+1,((k-1)!)^2*Stirling2(n+1,k)^2/2))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n, k^n*sum(j=0,k, (-1)^(n+k-j)*binomial(k,j)*(k-j)^n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f. Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 + n*k*x).
E.g.f. A(x) = Sum_{n>=0} (1 - exp(-n*x))^n satisfies the identities:
(1) A(x) = Sum_{n>=1} exp(-n*x) * (1 - exp(-n*x))^(n-1).
(2) A(x) = 1 + (1/2) * Sum_{n>=1} (1 - exp(-n*x))^(n-1).
(3) A(x) = Sum_{n>=1} Sum_{k>=0} (-1)^k * C(n+k-1,k) * exp(-k*(n+k-1)*x).
E.g.f. at offset 1, B(x) = Sum_{n>=1} a(n-1)*x^n/n!, satisfies:
(1) B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2.
(2) B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{k>=2} Sum_{n>=k} (-1)^k * C(n-1,k-1) * exp(-k*n*x)/(k*n), a convergent series for x>0.
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^n * k! * Stirling2(n,k).
a(n) = Sum_{k=1..n+1} ((k-1)!)^2 * Stirling2(n+1,k)^2 / 2 for n>0 with a(0)=1.
a(n) = Sum_{k=0..n} k^n * Sum_{j=0..k} (-1)^(n+k-j) * binomial(k,j) * (k-j)^n.
a(n) = A048163(n+1)/2 for n>0.
Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... - Vaclav Kotesovec, Jun 21 2013
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 13 2014

A229260 O.g.f.: Sum_{n>=0} n! * n^(2*n) * x^n / Product_{k=1..n} (1 - n^2*k*x).

Original entry on oeis.org

1, 1, 33, 4759, 1812645, 1432421311, 2033196095973, 4707913008727279, 16598602853910799125, 84603008117292025844671, 598699398082553327852353413, 5694542805400507375406964870799, 70891082687197321771955383523878005, 1129717853570486718325946169950885995231
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 33*x^2 + 4759*x^3 + 1812645*x^4 + 1432421311*x^5 +...
where
A(x) = 1 + x/(1-x) + 2!*2^4*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*3^6*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*4^8*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 33*x^2/2! + 4759*x^3/3! + 1812645*x^4/4! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2 + (exp(9*x)-1)^3 + (exp(16*x)-1)^4 + (exp(25*x)-1)^5 + (exp(36*x)-1)^6 + (exp(49*x)-1)^7 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(2*n) * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*m^(2*m)*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=sum(k=0, n, k^(2*n) * k! * Stirling2(n, k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(2*n) * k! * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n^2*x) - 1)^n.
a(n) ~ c * d^n * (n!)^3 / n, where d = r^3*(1+exp(2/r)) = 7.8512435106631367719817991716164612615296980032514..., r = 0.94520217245242431308104743874492469552738... is the root of the equation (1+exp(-2/r))*LambertW(-exp(-1/r)/r) = -1/r, and c = 0.142680262107781025906560380273234930916319644... . - Vaclav Kotesovec, May 08 2014

A203798 E.g.f.: Sum_{n>=0} (1 - exp(-n^3*x))^n.

Original entry on oeis.org

1, 1, 127, 115027, 383578651, 3406562690251, 66363706916031547, 2491358400855491082427, 164269869314849711368915051, 17742882813152530090093631133451, 2973340319455184373850280909330520667, 740141055495168376026146815923984436993627
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Examples

			O.g.f.: F(x) = 1 + x + 127*x^2 + 115027*x^3 + 383578651*x^4 +...
where
F(x) = 1 + x/(1+x) + 2^6*2!*x^2/((1+2^3*1*x)*(1+2^3*2*x)) + 3^9*3!*x^3/((1+3^3*1*x)*(1+3^3*2*x)*(1+3^3*3*x)) + 4^12*4!*x^4/((1+4^3*1*x)*(1+4^3*2*x)*(1+4^3*3*x)*(1+4^3*4*x)) +...
...
E.g.f.: A(x) = 1 + x + 127*x^2/2! + 115027*x^3/3! + 383578651*x^4/4! +...
where
A(x) = 1 + (1-exp(-x)) + (1-exp(-2^3*x))^2 + (1-exp(-3^3*x))^3 + (1-exp(-4^3*x))^4 + (1-exp(-5^3*x))^5 + (1-exp(-6^3*x))^6 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(-1)^(n-k) * k^(3*n) * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k^3*x+x*O(x^n)))^k), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, m^(3*m)*m!*x^m/prod(k=1, m, 1+m^3*k*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*k^(3*n)*k!*stirling(n, k, 2))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=0} n^(3*n) * n! * x^n / Product_{k=1..n} (1 + n^3*k*x).
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^(3*n) * k! * Stirling2(n,k).
a(n) == 1 (mod 6) for n>=0.
a(n) ~ c * d^n * (n!)^4 / n^(3/2), where d = 19.56009813649729638637945621039407270230134093295681610091365833339628... and c = 0.068225708245494700607840778486121251627676796315... . - Vaclav Kotesovec, May 08 2014

A220179 E.g.f.: Sum_{n>=1} (1 - exp(-n^2*x))^n / n.

Original entry on oeis.org

1, 15, 1267, 316275, 174397531, 179770837155, 310789895286907, 834906367019076675, 3293344593080631993211, 18259284528276047000517795, 137429981152689382429349060347, 1365009985652048448232840864764675, 17475885712645599218827214639383437691
Offset: 1

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Comments

Compare to the trivial identity: x = Sum_{n>=1} (1 - exp(-x))^n/n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.

Examples

			E.g.f.: A(x) = x + 15*x^2/2! + 1267*x^3/3! + 316275*x^4/4! + 174397531*x^5/5! +...
where
A(x) = (1-exp(-x)) + (1-exp(-4*x))^2/2 + (1-exp(-9*x))^3/3 + (1-exp(-16*x))^4/4 + (1-exp(-25*x))^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * k^(2*n-1) * k! * StirlingS2[n,k], {k,1,n}], {n,1,20}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k^2*x+x*O(x^n)))^k/k), n)
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    a(n)=polcoeff(sum(m=1, n, m^(2*m-1)*m!*x^m/prod(k=1, m, 1+m^2*k*x+x*O(x^n))), n) \\ Paul D. Hanna, Jan 05 2013
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=1, n, (-1)^(n-k)*k^(2*n-1)*k!*stirling(n, k, 2))}
    for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2013

Formula

O.g.f.: Sum_{n>=1} n^(2*n-1) * n! * x^n / Product_{k=1..n} (1 - n^2*k*x). - Paul D. Hanna, Jan 05 2013
a(n) = Sum_{k=1..n} (-1)^(n-k) * k^(2*n-1) * k! * Stirling2(n,k). - Paul D. Hanna, Jan 05 2013
a(n) ~ c * d^n * (n!)^3 / n^2, where d = 6.8312860494079582446988970296645779575650627187418208311407895492635... and c = 0.175744118254830086361220160145768507562830495967... . - Vaclav Kotesovec, May 08 2014

A351136 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 33, 4760, 1814698, 1436035954, 2041681617638, 4736066140912728, 16729538152432476024, 85437808930634601070944, 605822464949212598847700512, 5774077466357788471179323050704, 72030066703292325305595937373723040
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k)))

Formula

E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k.
a(n) ~ c * r^(2*n) * (1 + r*exp(2/r))^n * n^(3*n + 1/2) / exp(3*n), where r = 0.9414380538633895499299457441124149470954491698433... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-2/r) and c = 2.22047212763474863127102273073825610210704559048894... - Vaclav Kotesovec, Feb 03 2022

A249584 E.g.f.: Sum_{n>=0} (1 - exp(-n^n*x))^n.

Original entry on oeis.org

1, 1, 31, 117715, 103060086811, 35762522984596014091, 7426384178532990386136937008571, 1294894823429942167077615079432957932604708795, 253092741940931724342360814670783323840910439695820558059377771, 71352024076415778396125047299738711969981288880155877082517115026490261985701403851
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 31*x^2/2! + 117715*x^3/3! + 103060086811*x^4/4! +...
where
A(x) = 1 + (1-exp(-x)) + (1-exp(-2^2*x))^2 + (1-exp(-3^3*x))^3 + (1-exp(-4^4*x))^4 + (1-exp(-5^5*x))^5 + (1-exp(-6^6*x))^6 +...
Ordinary generating function.
O.g.f.: F(x) = 1 + x + 31*x^2 + 117715*x^3 + 103060086811*x^4 +...
where
F(x) = 1 + x/(1+x) + 2^4*2!*x^2/((1+2^2*1*x)*(1+2^2*2*x)) + 3^9*3!*x^3/((1+3^3*1*x)*(1+3^3*2*x)*(1+3^3*3*x)) + 4^16*4!*x^4/((1+4^4*1*x)*(1+4^4*2*x)*(1+4^4*3*x)*(1+4^4*4*x)) + 5^25*5!*x^5/((1+5^5*1*x)*(1+5^5*2*x)*(1+5^5*3*x)*(1+5^5*4*x)*(1+5^5*5*x)) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[(-1)^(n-k)*(k^k)^n*k!*StirlingS2[n, k], {k, 1, n}], {n, 1, 10}]}] (* Vaclav Kotesovec, Aug 24 2017 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k^k*x +x*O(x^n)))^k), n)}
    for(n=0, 15, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, m^(m^2)*m!*x^m/prod(k=1, m, 1+m^m*k*x +x*O(x^n))), n)}
    for(n=0, 15, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*k^(k*n)*k!*stirling(n, k, 2))}
    for(n=0, 10, print1(a(n), ", "))

Formula

a(n) == 1 (mod 6) for n>=0.
O.g.f.: Sum_{n>=0} n^(n^2) * n! * x^n / Product_{k=1..n} (1 + n^n*k*x).
a(n) = Sum_{k=0..n} (-1)^(n-k) * (k^k)^n * k! * Stirling2(n,k).
a(n) ~ n! * n^(n^2). - Vaclav Kotesovec, Aug 24 2017
Showing 1-6 of 6 results.