A188377 a(n) = n^3 - 4n^2 + 6n - 2.
7, 22, 53, 106, 187, 302, 457, 658, 911, 1222, 1597, 2042, 2563, 3166, 3857, 4642, 5527, 6518, 7621, 8842, 10187, 11662, 13273, 15026, 16927, 18982, 21197, 23578, 26131, 28862, 31777, 34882, 38183, 41686, 45397, 49322, 53467, 57838, 62441, 67282, 72367
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Comm. Algebra 32 (2004), 3017-3023.
- Gordon Royle, Cages of higher valency
- R. P. Sullivan, Semigroups generated by nilpotent transformations, Journal of Algebra 110 (1987), 324-345.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), this sequence (g=7). - Jason Kimberley, Oct 30 2011
Programs
-
Magma
[n^3 - 4*n^2 + 6*n - 2: n in [3..50]]; // Vincenzo Librandi, May 01 2011
-
Magma
[SequenceToInteger([2^^3,1],n-2):n in [5..50]]; // Jason Kimberley, Oct 20 2011
-
Mathematica
Table[n^3 - 4*n^2 + 6*n - 2, {n, 3, 80}] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *) LinearRecurrence[{4,-6,4,-1},{7,22,53,106},50] (* Harvey P. Dale, May 29 2019 *)
-
PARI
a(n)=n^3-4*n^2+6*n-2 \\ Charles R Greathouse IV, Apr 06 2012
Formula
a(n+1) = (n+1)^3 - 4*(n+1)^2 + 6*(n+1) - 2
= (n-1)^3 + 2*(n-1)^2 + 2*(n-1) + 2
= 1222 read in base n-1.
- Jason Kimberley, Oct 20 2011
From Colin Barker, Apr 06 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^3*(7 - 6*x + 7*x^2 - 2*x^3)/(1-x)^4. (End)
E.g.f.: 2 - x - x^2 + exp(x)*(x^3 - x^2 + 3*x - 2). - Stefano Spezia, Apr 09 2022
Extensions
Edited by N. J. A. Sloane, Apr 23 2011
Comments