A189188
Potential magic constants of 8 X 8 magic squares composed of consecutive primes.
Original entry on oeis.org
2016, 2244, 2336, 2570, 2762, 4106, 4362, 4464, 4566, 4670, 4776, 4934, 5952, 6870, 7036, 7146, 7588, 7644, 7700, 8824, 9756, 9930, 9988, 10394, 10454, 10514, 10690, 10868, 10928, 11560, 12620, 12682, 14986, 15424, 15808, 16000, 16510, 18668, 20434
Offset: 1
a(1) = 2016
[ 79 137 197 199 277 347 349 431
127 193 131 419 337 421 107 281
103 379 283 389 293 227 179 163
397 251 83 271 269 157 439 149
409 211 383 191 181 101 401 139
307 239 317 167 89 367 97 433
353 233 359 151 257 223 331 109
241 373 263 229 313 173 113 311 ]
.
a(12) = 4934
[ 823 619 461 457 631 587 599 757
443 563 647 509 733 761 787 491
503 809 419 701 661 797 487 557
683 499 743 677 449 607 617 659
439 727 571 577 719 821 601 479
811 641 593 523 421 467 709 769
691 433 673 751 773 431 613 569
541 643 827 739 547 463 521 653 ]
-
s:= proc(n) option remember;
`if` (n=1, add (ithprime(i), i=1..64),
ithprime(n+63) -ithprime(n-1) +s(n-1))
end:
a:= proc(n) option remember; local k, m; a(n-1);
for k from 1+b(n-1) while irem(s(k), 16, 'm')<>0 do od;
b(n):= k; 2*m
end:
a(0):=0: b(0):=0:
seq(a(n), n=1..50);
A191679
Potential magic constants of 9 X 9 magic squares composed of consecutive primes.
Original entry on oeis.org
2211, 2261, 2311, 2463, 2725, 4257, 6125, 6611, 7821, 9841, 9973, 10303, 10499, 10631, 10953, 11987, 12115, 12179, 12243, 12309, 12375, 12637, 12837, 13497, 13695, 14169, 15063, 15395, 16207, 16483, 16821, 17605, 17891, 19017, 20345, 20487, 21135, 22539, 22811, 23219, 23985
Offset: 1
a(1)=2211 for a square containing prime(12)..prime(92):
[37 127 163 179 229 233 379 421 443
41 431 463 457 59 139 433 109 79
409 311 389 71 307 347 281 53 43
373 137 181 251 401 239 317 89 223
173 419 101 103 113 353 313 277 359
97 383 397 479 47 197 107 263 241
349 131 193 149 367 199 73 467 283
439 61 257 191 227 167 151 449 269
293 211 67 331 461 337 157 83 271]
a(2)=2261 for a square containing prime(13)..prime(93):
[41 379 281 467 349 257 229 199 59
313 223 127 337 131 101 479 107 443
409 71 331 79 137 263 347 271 353
211 307 487 149 251 293 181 113 269
191 419 109 439 173 233 103 397 197
97 283 193 317 433 457 241 157 83
461 139 239 359 373 179 67 401 43
89 277 73 53 367 167 463 389 383
449 163 421 61 47 311 151 227 431]
-
s:= proc(n) option remember;
`if` (n=1, add (ithprime(i), i=1..81),
ithprime(n+80) -ithprime(n-1) +s(n-1))
end:
a:= proc(n) option remember; local k, m;
a(n-1);
for k from 1+b(n-1) while irem (s(k), 9, 'm')<>0 do od;
b(n):= k; m
end:
a(0):=0: b(0):=0:
seq (a(n), n=1..50);
-
Total[#]/9&/@Select[Partition[Prime[Range[500]],81,1],Divisible[ Total[ #],9]&] (* Harvey P. Dale, Jan 08 2014 *)
A192087
Potential magic constants of a 10 X 10 magic square composed of consecutive primes.
Original entry on oeis.org
2862, 3092, 3500, 4222, 4780, 5608, 7124, 10126, 10198, 11212, 11426, 12140, 12212, 12284, 12356, 12428, 12714, 12854, 12924, 15270, 16252, 16476, 18594, 18672, 18750, 18828, 19214, 20764, 21150, 23752, 24214, 24598, 24828, 27180, 27342, 27424, 27916, 28666, 29406, 29568
Offset: 1
a(1)=2862 for a square containing prime(9)..prime(108):
[23 179 409 373 263 137 461 457 523 37
193 353 443 199 317 109 337 397 131 383
71 73 389 251 593 167 439 449 233 197
571 293 101 229 29 557 271 31 379 401
127 419 283 241 269 239 547 89 181 467
491 433 223 113 41 577 43 311 563 67
281 97 163 587 191 313 149 509 421 151
307 499 227 431 103 83 59 479 211 463
277 359 257 331 569 541 53 79 47 349
521 157 367 107 487 139 503 61 173 347]
.
a(10)=11212
[769 863 1171 967 859 1381 1237 1459 1289 1217
1163 953 797 1297 1049 1021 1303 977 1423 1229
809 1277 1153 937 1151 1409 1291 839 1249 1097
1429 1231 1193 1451 1061 829 821 1361 823 1013
1453 997 947 1091 1321 887 1283 941 811 1481
1069 1201 1427 1129 907 919 1373 1039 1117 1031
1009 1123 1301 1093 1367 1483 911 1051 1087 787
991 1109 1279 877 1223 929 1187 1433 1327 857
1213 1439 1063 971 1447 883 773 1259 983 1181
1307 1019 881 1399 827 1471 1033 853 1103 1319]
-
s:= proc(n) option remember;
`if` (n=1, add (ithprime(i), i=1..100),
ithprime(n+99) -ithprime(n-1) +s(n-1))
end:
a:= proc(n) option remember; local k, m;
a(n-1);
for k from 1+b(n-1) while irem (s(k), 20, 'm')<>0 do od;
b(n):= k; m
end:
a(0):=0: b(0):=0:
seq (2*a(n), n=1..50);
Showing 1-3 of 3 results.
Comments