cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188888 Continued fraction of sqrt(2 + sqrt(3)) or 2*cos(Pi/12).

Original entry on oeis.org

1, 1, 13, 1, 2, 15, 10, 1, 18, 1, 1, 21, 2, 1, 1, 2, 4, 5, 2, 2, 2, 11, 1, 2, 2, 3, 1, 1, 10, 1, 2, 1, 2, 3, 2, 3, 15, 1, 2, 3, 1, 1, 90, 1, 44, 2, 4, 10, 1, 11, 9, 1, 17, 1, 8, 2, 2, 6, 2, 6, 1, 3, 1, 1, 1, 2, 20, 1, 7, 27, 1, 19, 40, 1, 304, 1, 1, 2, 1, 1, 1, 62, 1, 1, 2, 1, 2, 1, 32, 1, 1, 1, 11, 1, 20, 1, 85, 1, 1, 1, 3, 3, 13, 1, 4, 1, 3, 1, 3, 1, 16, 1, 9, 3, 2, 1, 1, 30, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

For a geometric interpretation, see A188640 and A188887.

Examples

			sqrt(2+sqrt(3)) = [1,1,13,1,2,15,10,1,18,1,1,21,2,1,1,2,4,...].
		

Crossrefs

Cf. A188887 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100));  ContinuedFraction(Sqrt(2 + Sqrt(3))); // G. C. Greubel, Sep 29 2018
  • Maple
    with(numtheory): cfrac(sqrt(2+sqrt(3)),120,'quotients'); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    r = 2^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    ContinuedFraction[Sqrt[2+Sqrt[3]],120] (* Harvey P. Dale, Jul 19 2014 *)
  • PARI
    default(realprecision, 100); contfrac(sqrt(2 + sqrt(3))) \\ G. C. Greubel, Sep 29 2018
    

Extensions

Name extended by Greg Dresden, Apr 13 2018
Offset changed by Andrew Howroyd, Aug 08 2024