cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189833 a(n) = n^2 + 8.

Original entry on oeis.org

8, 9, 12, 17, 24, 33, 44, 57, 72, 89, 108, 129, 152, 177, 204, 233, 264, 297, 332, 369, 408, 449, 492, 537, 584, 633, 684, 737, 792, 849, 908, 969, 1032, 1097, 1164, 1233, 1304, 1377, 1452, 1529, 1608, 1689, 1772, 1857, 1944, 2033
Offset: 0

Views

Author

Keywords

Comments

From César Eliud Lozada, Mar 29 2021: (Start)
Numbers a(n) such that sqrt( a(n) + 4*n*sqrt(2) ) = n + 2*sqrt(2). Examples:
For n=1: sqrt( 9 + 4*sqrt(2)) = 1 + 2*sqrt(2),
For n=2: sqrt(12 + 8*sqrt(2)) = 2 + 2*sqrt(2),
For n=3: sqrt(17 + 12*sqrt(2)) = 3 + 2*sqrt(2). (End)

Crossrefs

Programs

Formula

From G. C. Greubel, Jan 13 2018: (Start)
G.f.: (8 - 15*x + 9*x^2)/(1 - x)^3.
E.g.f.: (8 + x + x^2)*exp(x). (End)
From Amiram Eldar, Jul 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*sqrt(2)*Pi*coth(2*sqrt(2)*Pi))/16.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*sqrt(2)*Pi*cosech(2*sqrt(2)*Pi))/16. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (sqrt(7/2)/2)*sinh(sqrt(7)*Pi)/sinh(2*sqrt(2)*Pi).
Product_{n>=0} (1 + 1/a(n)) = (3/(2*sqrt(2)))*sinh(3*Pi)/sinh(2*sqrt(2)*Pi). (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 29 2011