cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A255847 a(n) = 2*n^2 + 16.

Original entry on oeis.org

16, 18, 24, 34, 48, 66, 88, 114, 144, 178, 216, 258, 304, 354, 408, 466, 528, 594, 664, 738, 816, 898, 984, 1074, 1168, 1266, 1368, 1474, 1584, 1698, 1816, 1938, 2064, 2194, 2328, 2466, 2608, 2754, 2904, 3058, 3216, 3378, 3544, 3714, 3888, 4066, 4248, 4434, 4624
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=8 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 32 is a square.

Crossrefs

Cf. A189833.
Subsequence of A047467.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+16: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 16, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{16,18,24},50] (* Harvey P. Dale, Nov 11 2017 *)
  • PARI
    vector(50, n, n--; 2*n^2+16)
    
  • Sage
    [2*n^2+16 for n in (0..50)]
    

Formula

G.f.: 2*(8 - 15*x + 9*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A189833(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*sqrt(2)*Pi*coth(2*sqrt(2)*Pi))/32.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*sqrt(2)*Pi*cosech(2*sqrt(2)*Pi))/32. (End)
E.g.f.: 2*exp(x)*(8 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Edited by Bruno Berselli, Mar 13 2015

A338432 Triangle read by rows: T(n, k) = (n - k + 1)^2 + 2*k^2, for n >= 1, and k = 1, 2, ..., n.

Original entry on oeis.org

3, 6, 9, 11, 12, 19, 18, 17, 22, 33, 27, 24, 27, 36, 51, 38, 33, 34, 41, 54, 73, 51, 44, 43, 48, 59, 76, 99, 66, 57, 54, 57, 66, 81, 102, 129, 83, 72, 67, 68, 75, 88, 107, 132, 163, 102, 89, 82, 81, 86, 97, 114, 137, 166, 201
Offset: 1

Views

Author

Wolfdieter Lang, Dec 09 2020

Keywords

Comments

This triangle is obtained from the array A(m, k) = m^2 + 2*k^2, for k and m >= 1, read by upwards antidiagonals. This array A is of interest for representing numbers as a sum of three non-vanishing squares with two squares coinciding.
For the numbers represented this way, see A154777. To find the actual values for m and k (taken positive), given a representable number from A154777, one can also use the number triangle T(n, k) = A(n-k+1, k).
To find the number of representations of value N (from A154777), it is sufficient to consider the rows n >= 1 not exceeding n_{max} = Floor(N, Min), where the sequence Min gives the minima of the numbers in each row: Min = {min(n)}_{n>=1} with min(n) = min(T(n, 1), T(n, 2), ..., T(n, n)) and Floor(N, Min) is the greatest member of Min not exceeding N.
Conjecture: min(n) = T(n, ceiling(n/3)), n >= 1. This is the sequence (n+1)^2 - ceiling(n/3)*(2*(n+1) - 3*ceiling(n/3)) = A071619(n+1) = ceiling((2/3)*(n+1)^2) = (n+1)^2 - floor((1/3)*(n+1)^2) = 3, 6, 11, 17, 24, 33, 43, .... (Proof of these identities by considering the three n (mod 3) cases.)
For the multiplicities of the representable values A154777(n), see A339047.
The author met this representation problem in connection with special triples of integer curvatures in the Descartes-Steiner five circle problem.

Examples

			The triangle T(n, k) begins:
n \ k  1   2   3   4   5   6   7   8   9  10  11  12 ...
1:     3
2:     6   9
3:    11  12  19
4:    18  17  22  33
5:    27  24  27  36  51
6:    38  33  34  41  54  73
7:    51  44  43  48  59  76  99
8:    66  57  54  57  66  81 102 129
9:    83  72  67  68  75  88 107 132 163
10:  102  89  82  81  86  97 114 137 166 201
11:  123 108  99  96  99 108 123 144 171 204 243
12:  146 129 118 113 114 121 134 153 178 209 246 289
...
----------------------------------------------------
T(5, 1) = 5^2 + 2*1^2 = 27 = T(5, 3) = 3^2 + 2*3^2. A338433(11) = 2 for A154777(11) = 27.
T(4, 4) = 1^2 + 2*4^2 = 33 = T(6, 2) = 5^2 + 2*2^2. A338433(12) = 2 for A154777(12) = 33.
T(5, 5) = 1^2 + 2*5^2 = 51 = T(7, 1) = 7^2 + 2*1^2. A338433(20) = 2 for A154777(20) = 51.
T(7, 7) = 1^1 - 2*7^2 = 99 = T(11, 3) = 9^2 + 2*3^2 = 99 = T(11, 5) = 7^2 + 2*5^2. A338433(39) = 3 for A154777(39) = 99.
The first multiplicity 4 appears for 297.
		

Crossrefs

Cf. Columns k = 1..3: A059100, A189833, A241848.
Cf. Diagonals m = 1..4: A058331, A255843, A339048, A255847.

Formula

T(n, k) = A(n - k + 1, k), with the array A(m, k) = m^2 + 2*k^2, for n >= 1 and k = 1, 2, ..., n, and 0 otherwise.
G.f. of T and A column k (offset 0): G(k, x) = (1 + x + 2*(1 - x)^2*k^2)/(1-x)^3, for k >= 1.
G.f. of T diagonal m (A row m) (offset 0): D(m, x) = ((2*(1+x) + (1-x)^2*m^2)/(1-x)^3), for m >= 1.
G.f. of row polynomials in x (that is, g.f. of the triangle): G(z,x) = (3 - 3*z + (2 - 6*x + x^2)*z^2 + (2 + x)*x*z^3)*x*z / ((1 - z)*(1 - x*z))^3.

A357995 Frobenius number for A = (n, n+1^2, n+2^2, n+3^2, ...) for n>=2.

Original entry on oeis.org

1, 5, 11, 13, 11, 20, 31, 24, 27, 29, 43, 37, 49, 52, 63, 58, 69, 53, 75, 61, 65, 84, 95, 98, 85, 96, 107, 115, 88, 121, 127, 122, 130, 136, 139, 134, 145, 148, 159, 151, 154, 157, 171, 174, 169, 180, 191, 194, 178, 181, 203, 198, 201, 212, 223, 210, 221, 232, 235, 214
Offset: 2

Views

Author

Michel Marcus, Oct 23 2022

Keywords

Crossrefs

Programs

  • Python
    def A357995(n):
        a, b = set([0]), set(range(1,n**2))
        for m in [n+k**2 for k in range(n+1)]:
            d=m
            while d < n**2:
                c2 = set([x for x in b if x-d in a])
                a |= c2 ; b -= c2 ; d*=2
        return max(b) # Bert Dobbelaere, Oct 30 2022

Extensions

More terms from Bert Dobbelaere, Oct 30 2022

A214870 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places counterclockwise. T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 9, 8, 13, 17, 16, 6, 14, 21, 26, 25, 11, 12, 22, 31, 37, 36, 18, 15, 20, 32, 43, 50, 49, 27, 24, 23, 30, 44, 57, 65, 64, 38, 35, 19, 33, 42, 58, 73, 82, 81, 51, 48, 28, 29, 45, 56, 74, 91, 101, 100, 66, 63, 39, 34, 41, 59, 72, 92, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1).
Enumeration table T(n,k) layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1); T(n,2), T(n,4), ... T(4,n), T(2,n);
. . .

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   9  16  25  36 ...
   7   8   6  11  18  27 ...
  13  14  12  15  24  35 ...
  21  22  20  23  19  28 ...
  31  32  30  33  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  9,  8, 13;
  17, 16,  6, 14, 21;
  26, 25, 11, 12, 22, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-i+(j%2)*(2-(j+1)/2)+((j+1)%2)*(j/2+1)
    else:
       result=j*j-2*(i%2)*j + (i%2)*((i+1)/2+1) + ((i+1)%2)*(-i/2+1)

Formula

As table
T(n,k) = k*k-2*(n mod 2)*k+(n mod 2)*((n+1)/2+1)+((n+1) mod 2)*(-n/2+1), if n<=k;
T(n,k) = n*n-n+(k mod 2)*(2-(k+1)/2)+((k+1) mod 2)*(k/2+1), if n>k.
As linear sequence
a(n) = j*j-2*(i mod 2)*j+(i mod 2)*((i+1)/2+1)+((i+1) mod 2)*(-i/2+1), if i<=j;
a(n) = i*i-i+(j mod 2)*(2-(j+1)/2)+((j+1) mod 2)*(j/2+1), if i>j; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A214871 Natural numbers placed in table T(n,k) layer by layer. The order of placement - T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1). Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 2, 7, 11, 8, 9, 12, 18, 13, 5, 14, 19, 27, 20, 15, 16, 21, 28, 38, 29, 22, 10, 23, 30, 39, 51, 40, 31, 24, 25, 32, 41, 52, 66, 53, 42, 33, 17, 34, 43, 54, 67, 83, 68, 55, 44, 35, 36, 45, 56, 69, 84, 102, 85, 70, 57, 46, 26, 47, 58, 71, 86, 103, 123
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1).
Enumeration table T(n,k) layer by layer. The order of the list:
T(1,1)=1;
T(2,2), T(1,2), T(2,1);
. . .
T(n,n), T(1,n), T(n,1), T(2,n), T(n,2),...T(n-1,n), T(n,n-1);
. . .

Examples

			The start of the sequence as table:
  1....3...6..11..18..27...
  4....2...8..13..20..29...
  7....9...5..15..22..31...
  12..14..16..10..24..33...
  19..21..23..25..17..35...
  28..30..32..34..36..26...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  3,4;
  6,2,7;
  11,8,9,12;
  18,13,5,14,19;
  27,20,15,16,21,28;
  . . .
		

Crossrefs

Cf. A060734, A060736, A185725, A213921, A213922; table T(n,k) contains: in rows A059100, A087475, A114949, A189833, A114948, A114962; in columns A117950, A117951, A117619, A189834, A189836; the main diagonal is A002522.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i == j:
       result=(i-1)**2+1
    if i > j:
       result=(i-1)**2+2*j+1
    if i < j:
       result=(j-1)**2+2*i

Formula

As table
T(n,k) = (n-1)^2+1, if n=k;
T(n,k) = (n-1)^2+2*k+1, if n>k;
T(n,k) = (k-1)^2+2*n, if n
As linear sequence
a(n) = (i-1)^2+1, if i=j;
a(n) = (i-1)^2+2*j+1, if i>j;
a(n) = (j-1)^2+2*i, if i>j; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Showing 1-6 of 6 results.