cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066642 a(n) = floor(n^(n/2)).

Original entry on oeis.org

1, 1, 2, 5, 16, 55, 216, 907, 4096, 19683, 100000, 534145, 2985984, 17403307, 105413504, 661735513, 4294967296, 28761784747, 198359290368, 1406563064942, 10240000000000, 76436817165460, 584318301411328, 4569515072723572, 36520347436056576, 298023223876953125
Offset: 0

Views

Author

Amarnath Murthy, Dec 29 2001

Keywords

Examples

			a(5) = 55 as {5^(1/2)}^5 = 55.9016994374947424102293417182819...
		

Crossrefs

Bisection gives A062971 (even part).

Programs

  • Magma
    [Floor(n^(n/2)): n in [1..25]]; // G. C. Greubel, Dec 30 2017
    
  • Maple
    a:= n-> floor(n^(n/2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 08 2025
  • Mathematica
    Table[ Floor[Sqrt[n]^n], {n, 1, 25} ]
  • PARI
    a(n) = sqrtint(n^n); \\ Michel Marcus, Nov 01 2022
    
  • Python
    from math import isqrt
    def A066642(n): return isqrt(n**n) # Chai Wah Wu, Jun 08 2025

Extensions

More terms from Robert G. Wilson v, Jan 03 2002
a(0)=1 prepended by Alois P. Heinz, Jun 08 2025

A075364 a(n) = floor( geometric mean of n-th row of A075363).

Original entry on oeis.org

1, 2, 9, 32, 125, 529, 2401, 11585, 59049, 316227, 1771561, 10343751, 62748517, 394421215, 2562890625, 17179869184, 118587876497, 841567195983, 6131066257801, 45794672179195, 350277500542221, 2740695769692949
Offset: 1

Views

Author

Amarnath Murthy, Sep 20 2002

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n^((n+1)/2)): n in [1..30]]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[Floor[n^((n + 1)/2)], {n,1,50}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=1, 30, print1(floor(n^((n+1)/2)), ", ")) \\ G. C. Greubel, Dec 30 2017
    
  • Python
    from math import isqrt
    def A075364(n): return isqrt(n**(n+1)) # Chai Wah Wu, Jun 08 2025

Formula

a(n) = floor(n^((n+1)/2)).

Extensions

More terms from Sascha Kurz, Jan 12 2003

A255616 Table read by antidiagonals, T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 5, 4, 1, 1, 2, 5, 8, 9, 5, 1, 1, 2, 6, 11, 16, 15, 8, 1, 1, 2, 7, 14, 25, 32, 27, 11, 1, 1, 3, 8, 18, 36, 55, 64, 46, 16, 1, 1, 3, 9, 22, 49, 88, 125, 128, 81, 22, 1, 1, 3, 10, 27, 64, 129, 216, 279, 256, 140, 32, 1, 1, 3, 11, 31, 81, 181, 343, 529, 625, 512, 243, 45, 1
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 28 2015

Keywords

Examples

			See table in the links.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Floor[Sqrt[k^n]]; Table[T[k, n + 1 - k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    {for(i=1,20,for(n=0,i-1,a=floor(sqrt((i-n)^n));print1(a,", ")))}

Formula

T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Extensions

Terms a(81) onward added by G. C. Greubel, Dec 30 2017
Showing 1-3 of 3 results.