cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A190343 a(n) = floor(n^((n-1)/2)).

Original entry on oeis.org

1, 1, 3, 8, 25, 88, 343, 1448, 6561, 31622, 161051, 861979, 4826809, 28172943, 170859375, 1073741824, 6975757441, 46753733110, 322687697779, 2289733608959, 16679880978201, 124577080440588, 952809757913927, 7454684703958210, 59604644775390625, 486594112179717592
Offset: 1

Views

Author

Bruno Berselli, May 12 2011

Keywords

Examples

			a(6) = 88 = floor(6^(5/2)).
		

Crossrefs

Programs

  • Magma
    [Floor(n^((n-1)/2)): n in [1..24]];
    
  • Mathematica
    Table[Floor[n^((n - 1)/2)], {n, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
  • PARI
    for(n=1,20, print1(floor(n^((n-1)/2)), ", ")) \\ G. C. Greubel, Dec 30 2017
    
  • Python
    from math import isqrt
    def A190343(n): return isqrt(n**(n-1)) # Chai Wah Wu, Jun 08 2025

A275945 Numbers n such that the average of different permutations of digits of n is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 39, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 60, 62, 64, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111
Offset: 1

Views

Author

Altug Alkan, Aug 29 2016

Keywords

Comments

Complement of A273492.
Permutations with a first digit of 0 are included in the average (i.e. 0010 is taken to be 10, 01 is taken to be 1, etc.).
From Robert Israel, Sep 01 2016: (Start)
n such that A002275(A055642(n))*A007953(n) is divisible by A055642(n).
In particular, contains all k-digit numbers if k is in A014950. (End)

Examples

			97 is a term because (97+79) is divisible by 2.
100 is a term because (1+10+100) is divisible by 3.
123 is a term because (123+132+213+231+312+321) is divisible by 6.
1001 is not a term because (11+101+110+1001+1010+1100) is not divisible by 6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L, d, s;
      L:= convert(n, base, 10);
      d:= nops(L);
      s:= convert(L, `+`);
      evalb(s*(10^d-1)/9 mod d = 0)
    end proc:
    select(f, [$1..10000]); # Robert Israel, Sep 01 2016
  • Mathematica
    Select[Range@ 111, IntegerQ@ Mean@ Map[FromDigits, Permutations@ #] &@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 29 2016 *)
  • PARI
    A055642(n) = #Str(n);
    A007953(n) = sumdigits(n);
    for(n=1, 2000, if((((10^A055642(n)-1)/9)*A007953(n)) % A055642(n) == 0, print1(n, ", ")));

A147771 a(n) = round(n^(n/2)).

Original entry on oeis.org

1, 2, 5, 16, 56, 216, 907, 4096, 19683, 100000, 534146, 2985984, 17403307, 105413504, 661735514, 4294967296, 28761784748, 198359290368, 1406563064942, 10240000000000, 76436817165460, 584318301411328, 4569515072723572
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[AppendTo[lst,Round[(n^n)^(1/2)]],{n,40}];lst
    Table[Round[n^(n/2)],{n,30}] (* Harvey P. Dale, Feb 17 2020 *)
  • Python
    from gmpy2 import isqrt_rem
    def A147771(n):
        i, j = isqrt_rem(n**n)
        return int(i+int(4*(j-i) >= 1)) # Chai Wah Wu, Aug 16 2016

A273492 Numbers n such that the average of different permutations of digits of n is not an integer.

Original entry on oeis.org

10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 1000, 1001, 1002, 1004, 1005, 1006, 1008, 1009, 1010, 1011, 1013, 1014, 1015, 1017, 1018, 1019, 1020, 1022, 1023, 1024
Offset: 1

Views

Author

Altug Alkan, Aug 29 2016

Keywords

Comments

Complement of A275945.
Permutations with a first digit of 0 are included in the average (i.e. 0010 is taken to be 10, 01 is taken to be 1, etc.).
From Robert Israel, Sep 01 2016: (Start)
n such that A002275(A055642(n))*A007953(n) is not divisible by A055642(n).
In particular, contains no k-digit numbers if k is in A014950. (End)

Examples

			12 is a term because (12+21) = 33 is not divisible by 2.
1000 is a term because (1+10+100+1000) = 1111 is not divisible by 4.
123 is not a term because (123+132+213+231+312+321) is divisible by 6.
1001 is a term because (11+101+110+1001+1010+1100) is not divisible by 6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,d,s;
      L:= convert(n,base,10);
      d:= nops(L);
      s:= convert(L,`+`);
      evalb(s*(10^d-1)/9 mod d = 0)
    end proc:
    remove(f, [$1..10000]); # Robert Israel, Sep 01 2016
  • Mathematica
    Select[Range[2^10], ! IntegerQ@ Mean@ Map[FromDigits, Permutations@ #] &@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 29 2016 *)
  • PARI
    A055642(n) = #Str(n);
    A007953(n) = sumdigits(n);
    for(n=1, 2000, if((((10^A055642(n)-1)/9)*A007953(n)) % A055642(n) != 0, print1(n, ", ")));

A255616 Table read by antidiagonals, T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 5, 4, 1, 1, 2, 5, 8, 9, 5, 1, 1, 2, 6, 11, 16, 15, 8, 1, 1, 2, 7, 14, 25, 32, 27, 11, 1, 1, 3, 8, 18, 36, 55, 64, 46, 16, 1, 1, 3, 9, 22, 49, 88, 125, 128, 81, 22, 1, 1, 3, 10, 27, 64, 129, 216, 279, 256, 140, 32, 1, 1, 3, 11, 31, 81, 181, 343, 529, 625, 512, 243, 45, 1
Offset: 0

Views

Author

Kival Ngaokrajang, Feb 28 2015

Keywords

Examples

			See table in the links.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Floor[Sqrt[k^n]]; Table[T[k, n + 1 - k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    {for(i=1,20,for(n=0,i-1,a=floor(sqrt((i-n)^n));print1(a,", ")))}

Formula

T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.

Extensions

Terms a(81) onward added by G. C. Greubel, Dec 30 2017
Showing 1-5 of 5 results.