A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A190439 Positions of 2 in A190436.
1, 3, 6, 11, 14, 16, 19, 22, 24, 27, 32, 35, 37, 40, 45, 48, 50, 53, 56, 58, 61, 66, 69, 71, 74, 77, 79, 82, 84, 87, 90, 92, 95, 100, 103, 105, 108, 111, 113, 116, 121, 124, 126, 129, 134, 137, 139, 142, 145, 147, 150, 155, 158, 160, 163, 166, 168, 171, 173, 176, 179, 181, 184, 189, 192, 194, 197, 200, 202, 205, 210, 213, 215, 218
Offset: 1
Keywords
Comments
See A190436.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A190436.
Programs
Extensions
Typos in definition corrected by Arkadiusz Wesolowski, Jan 07 2012
A190436 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,3,2) and []=floor.
2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0
Offset: 1
Keywords
Comments
Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
A190437 Positions of 0 in A190436.
2, 5, 10, 13, 18, 23, 26, 31, 34, 36, 39, 44, 47, 52, 57, 60, 65, 68, 73, 78, 81, 86, 89, 91, 94, 99, 102, 107, 112, 115, 120, 123, 125, 128, 133, 136, 141, 146, 149, 154, 157, 162, 167, 170, 175, 178, 180, 183, 188, 191, 196, 201, 204, 209, 212, 217
Offset: 1
Keywords
Comments
See A190436.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A190436.
Programs
A302253 Positions of 3 in A190436.
8, 21, 29, 42, 55, 63, 76, 97, 110, 118, 131, 144, 152, 165, 186, 199, 207, 220, 241, 254, 262, 275, 288, 296, 309, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 474, 487, 495, 508, 521, 529, 542, 563, 576, 584, 597, 618, 631, 639, 652, 665, 673, 686, 707, 720, 728
Offset: 1
Keywords
Comments
Write a(n) = [(bn+c)r] - b[nr] - [cr]. If r>0 and b and c are integers satisfying b >= 2 and 0 <= c <= b-1, then 0 <= a(n) <= b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
Links
- G. C. Greubel, Table of n, a(n) for n = 1..20000
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions