A190814 Initial primes of 5 consecutive primes with consecutive gaps 2, 4, 6, 8.
347, 1427, 2687, 4931, 13901, 21557, 23741, 27941, 28277, 31247, 32057, 33617, 45821, 55661, 55817, 68207, 68897, 91571, 128657, 128981, 167621, 179897, 193871, 205421, 221717, 234191, 239231, 258107, 258611, 259157, 278807, 302831, 305477, 348431, 354371
Offset: 1
Keywords
Examples
Prime(69..73) = {347, 349, 353, 359, 367} and 349 - 347 = 2, 353 - 349 = 4, 359 - 353 = 6, 367 - 359 = 8.
Links
- Zak Seidov, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Maple
N:= 10^6: # to get all terms <= N Primes:= select(isprime, [seq(i,i=3..N+20,2)]): Primes[select(t -> [Primes[t+1]-Primes[t],Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2],Primes[t+4]-Primes[t+3]] = [2,4,6,8], [$1..nops(Primes)-4])]; # Robert Israel, Aug 03 2017
-
Mathematica
d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 4, 1], {2, 4, 6, 8}]]] (* T. D. Noe, May 23 2011 *) Select[Partition[Prime[Range[31000]],5,1],Differences[#]=={2,4,6,8}&][[All,1]] (* Harvey P. Dale, Jul 03 2020 *)
Extensions
Additional cross references from Harvey P. Dale, May 10 2014
Comments