cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191007 a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3.

Original entry on oeis.org

3, 9, 27, 69, 171, 405, 939, 2133, 4779, 10581, 23211, 50517, 109227, 234837, 502443, 1070421, 2271915, 4805973, 10136235, 21321045, 44739243, 93672789, 195734187, 408245589, 850045611, 1767200085, 3668617899, 7605671253, 15748213419, 32570168661, 67287820971
Offset: 0

Views

Author

Edward Omey, Jun 16 2011

Keywords

Comments

Another renewal type of sequence: Let X, X(1),X(2),... denote independent random variables with pdf P(X=1) = P(X=2) = P(X=4) = 1/3. Let N(x) denote the first value of k such that X(1)*X(2)...*X(k) > x, and let H(x) = E(N(x)). The sequence a(n) is given by a(n) = 2^(n+1)*H(2^n).

Crossrefs

3 times A045883.

Programs

  • Magma
    [n*2^(n+1)+(2^(n+3)+(-1)^n)/3: n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
  • Mathematica
    Table[n 2^(n + 1) + (2^(n + 3) + (-1)^n)/3, {n, 0, 70}] (* Vincenzo Librandi, Oct 16 2014 *)
    LinearRecurrence[{3,0,-4},{3,9,27},40] (* Harvey P. Dale, Feb 11 2024 *)
  • PARI
    a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3; \\ Michel Marcus, Oct 16 2014
    

Formula

a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3.
a(n) = 3 * A045883(n+1).
G.f.: 3/((1 + x)*(1 - 2*x)^2). [Bruno Berselli, Oct 16 2014]

Extensions

Formula corrected and more terms from Michel Marcus, Oct 16 2014