cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A038889 Primes p such that 17 is a square mod p.

Original entry on oeis.org

2, 13, 17, 19, 43, 47, 53, 59, 67, 83, 89, 101, 103, 127, 137, 149, 151, 157, 179, 191, 223, 229, 239, 251, 257, 263, 271, 281, 293, 307, 331, 349, 353, 359, 373, 383, 389, 409, 421, 433, 443, 457, 461, 463, 467, 491, 509, 523, 557, 563, 569, 577, 587, 593
Offset: 1

Views

Author

Keywords

Comments

Also primes of the form 2*x^2+x*y-2*y^2 (as well as of the form 2*x^2+5*x*y+y^2). Discriminant = 17. Class = 1. This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 06 2008. R. J. Mathar proved that this coincides with the present sequence, Jul 22 2008
Also, primes which are a square (mod 17) (or, (mod 34), cf. A191025). - M. F. Hasler, Jan 15 2016

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038889 (17 is a square mod p); A141111, A141112 (d=65).
Primes in A035258.

Programs

Extensions

Edited by N. J. A. Sloane, Jul 28 2008 at the suggestion of R. J. Mathar

A191026 Primes p that have Jacobi symbol (p|35) = 1.

Original entry on oeis.org

3, 11, 13, 17, 29, 47, 71, 73, 79, 83, 97, 103, 109, 149, 151, 157, 167, 173, 179, 191, 211, 223, 227, 239, 257, 281, 283, 293, 307, 313, 331, 353, 359, 367, 379, 383, 389, 397, 401, 421, 431, 433, 449, 467, 491, 499, 503, 523, 541, 563, 569, 571, 577, 587
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares (mod 35)", which is subsequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(587) | JacobiSymbol(p,35) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,35]==1&]
  • PARI
    is(p)=kronecker(p, 35)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191028 Primes p with Kronecker symbol (p|38) = 1.

Original entry on oeis.org

3, 7, 13, 17, 23, 29, 37, 47, 53, 59, 67, 73, 107, 109, 137, 173, 179, 181, 191, 199, 211, 227, 233, 239, 263, 269, 271, 293, 307, 311, 313, 317, 331, 353, 359, 367, 373, 379, 421, 457, 463, 479, 503, 509, 523, 547, 563, 577, 593, 617, 631, 647, 659, 661
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 38)", which is sequence A106863. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(661) | KroneckerSymbol(p, 38) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,38]==1&]
  • PARI
    is(p)=kronecker(p, 38)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191029 Primes p with Jacobi symbol (p|39) = 1.

Original entry on oeis.org

2, 5, 11, 41, 43, 47, 59, 61, 71, 79, 83, 89, 103, 127, 137, 139, 149, 157, 167, 181, 197, 199, 211, 227, 239, 277, 281, 283, 293, 313, 317, 337, 353, 359, 367, 373, 383, 401, 431, 433, 439, 449, 461, 479, 509, 523, 547, 557, 571, 587, 593, 601, 607, 617
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 39)", which is subsequence A267455 \ {3, 13}. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(617) | JacobiSymbol(p, 39) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,39]==1&]
  • PARI
    select(p->kronecker(p,39)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191032 Primes p with Kronecker symbol (p|46) = 1.

Original entry on oeis.org

5, 11, 19, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 107, 109, 127, 149, 151, 157, 167, 181, 193, 223, 227, 229, 233, 239, 251, 257, 271, 283, 293, 311, 353, 373, 379, 389, 409, 419, 421, 439, 449, 463, 467, 487, 523, 557, 563, 571, 577, 593, 599, 601, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 46)". - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | KroneckerSymbol(p, 46) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,46]==1&]
  • PARI
    select(p->kronecker(p,46)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191036 Primes p that have Jacobi symbol (p|55) = 1.

Original entry on oeis.org

2, 7, 13, 17, 31, 43, 59, 71, 73, 83, 89, 107, 127, 167, 173, 179, 181, 191, 193, 197, 199, 227, 229, 233, 251, 263, 269, 277, 283, 293, 307, 311, 331, 337, 347, 373, 379, 389, 401, 419, 421, 449, 457, 499, 503, 509, 521, 523, 547, 557, 563, 593, 599, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 55", which is sequence A267478, a subsequence whose terms have (p|5) = (p|11) = 1 except for the two initial terms 5 and 11. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | JacobiSymbol(p, 55) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,55]==1&]
  • PARI
    select(p->kronecker(p,55)==1&&isprime(p),[1..1500]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191037 Primes p that have Jacobi symbol (p|58) = 1.

Original entry on oeis.org

3, 7, 11, 19, 23, 37, 43, 61, 71, 101, 103, 131, 151, 157, 163, 167, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 281, 293, 307, 313, 317, 331, 353, 379, 383, 389, 401, 421, 431, 439, 443, 457, 461, 463, 467, 487, 491, 521, 541, 563, 593, 619, 631, 647
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares mod 58", which is sequence A038901. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 58) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Maple
    select(t -> isprime(t) and numtheory:-jacobi(t,58)=1, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 15 2016
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,58]==1&]
  • PARI
    select(p->kronecker(p,58)==1&&isprime(p),[1..1000]) \\ This is to provide a generic characteristic function ("is_A191037") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191040 Primes p that have Kronecker symbol (p|62) = 1.

Original entry on oeis.org

3, 7, 11, 13, 29, 37, 41, 43, 47, 53, 61, 71, 83, 97, 103, 113, 139, 179, 181, 191, 193, 197, 229, 233, 251, 257, 269, 277, 281, 311, 331, 347, 359, 389, 431, 439, 461, 479, 491, 499, 503, 509, 521, 523, 557, 571, 577, 587, 593, 599, 607, 613, 617, 619, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 62)", which is sequence A267481. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 62) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,62]==1&]
  • PARI
    select(p->kronecker(p, 62)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191040") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191042 Primes p that have Jacobi symbol (p|69) = 1.

Original entry on oeis.org

5, 11, 13, 17, 31, 53, 73, 83, 89, 107, 113, 127, 137, 139, 149, 151, 163, 191, 193, 211, 223, 227, 251, 263, 271, 277, 281, 293, 307, 331, 349, 359, 383, 389, 397, 401, 409, 419, 431, 439, 463, 467, 479, 487, 499, 503, 521, 541, 547, 557, 563, 569, 577, 601
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 69", which would be the sequence (3, 13, 31, 73, 127, 139, 151, 163, 193, 211, 223, 271, 277, 307, 331, 349, 397, ...). - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(601) | JacobiSymbol(p, 69) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,69]==1&]
  • PARI
    select(p->kronecker(p, 69)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016
Showing 1-10 of 15 results. Next