cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A256567 Primes p with the property that there are three consecutive integers (x,x+1,x+2) with 1 < x <= p-3 whose product is 1 modulo p.

Original entry on oeis.org

7, 11, 17, 19, 23, 37, 43, 53, 59, 61, 67, 79, 83, 89, 97, 101, 103, 107, 109, 113, 137, 149, 157, 167, 173, 181, 191, 199, 211, 223, 227, 229, 241, 251, 263, 271, 281, 283, 293, 307, 313, 317, 337, 347, 359, 367, 373, 379, 383, 389, 401, 419, 421, 431, 433, 449
Offset: 1

Views

Author

Marian Kraus, Apr 02 2015

Keywords

Comments

There may be one or more such triples, but 23 is the only prime up to 100000 having precisely two such triples. For the number of triples for each prime, see A256572.
Together with 5, supersequence of A191065. - Arkadiusz Wesolowski, Nov 24 2021

Examples

			For p=7: 4*5*6=120==1 (mod 7), so 7 is a term.
For p=11: 5*6*7=210==1 (mod 11), so 11 is a term.
For p=17: 4*5*6=120==1 (mod 17), so 17 is a term.
13 is not a term because there is no such triple with product ==  1 (mod 13).
		

Crossrefs

Programs

  • PARI
    isok(p) = {if (isprime(p), for (x=1, p-3, if (Mod(x*(x+1)*(x+2), p) == 1, return (1));););} \\ Michel Marcus, Oct 05 2021
  • R
    library(numbers)
    IP <- vector()
    t <- vector()
    S <- vector()
    IP <- c(Primes(1000)) # Build a vector of all primes < 1000.
    for (j in 1:(length(IP))){
       for (i in 3:(IP[j]-2))
          t[i-1] <- as.vector(mod(((i-1)*i*(i+1)),IP[j]))
       S[j] <- length(which(t==1))
    }
    IP[S!=0]
    #The loop checks for every triple for every prime, what it is modulo that prime. "IP[S!=0]" lists the primes that have at least one triple. For all p<10000 it takes a few minutes. For all p<100000 a few hours.
    

A278579 Quadratic non-residues of 23: numbers n such that Jacobi(n,23) = -1.

Original entry on oeis.org

5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, 28, 30, 33, 34, 37, 38, 40, 42, 43, 44, 45, 51, 53, 56, 57, 60, 61, 63, 65, 66, 67, 68, 74, 76, 79, 80, 83, 84, 86, 88, 89, 90, 91, 97, 99, 102, 103, 106, 107, 109, 111, 112, 113, 114, 120, 122, 125, 126, 129, 130, 132, 134, 135, 136, 137, 143, 145, 148, 149
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2016

Keywords

Comments

Important for the study of Ramanujan numbers A000594.

References

  • Wilton, John Raymond. "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. See page 1.

Crossrefs

Cf. A028736, A000594, A063987, A278580, A028759 (=first 22 terms).
For the primes in this sequence see A191065.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1},{5,7,10,11,14,15,17,19,20,21,22,28},80] (* Harvey P. Dale, Jan 12 2020 *)

Formula

From Robert Israel, Nov 30 2016: (Start)
a(n+11) = a(n)+23.
G.f.: (x^11+x^10+x^9+x^8+2*x^7+2*x^6+x^5+3*x^4+x^3+3*x^2+2*x+5)/(x^12-x^11-x+1). (End)

A035167 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -23.

Original entry on oeis.org

1, 2, 2, 3, 0, 4, 0, 4, 3, 0, 0, 6, 2, 0, 0, 5, 0, 6, 0, 0, 0, 0, 1, 8, 1, 4, 4, 0, 2, 0, 2, 6, 0, 0, 0, 9, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 2, 10, 1, 2, 0, 6, 0, 8, 0, 0, 0, 4, 2, 0, 0, 4, 0, 7, 0, 0, 0, 0, 2, 0, 2, 12, 2, 0, 2, 0, 0, 8, 0, 0, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -23, d], { d, Divisors[ n]}]]; (* Michael Somos, Jan 24 2021 *)
  • PARI
    my(m = -23); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker( -23, d)))}; /* Michael Somos, Jan 24 2021 */

Formula

From Amiram Eldar, Nov 17 2023: (Start)
a(n) = Sum_{d|n} Kronecker(-23, d).
Multiplicative with a(23^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-23, p) = -1 (p is in A191065), and a(p^e) = e+1 if Kronecker(-23, p) = 1 (p is in A191021).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*Pi/sqrt(23) = 1.965202... . (End)

A296932 Primes p such that Legendre(-23,p) = 0 or 1.

Original entry on oeis.org

2, 3, 13, 23, 29, 31, 41, 47, 59, 71, 73, 101, 127, 131, 139, 151, 163, 167, 173, 179, 193, 197, 211, 223, 233, 239, 257, 269, 271, 277, 307, 311, 317, 331, 347, 349, 353, 397, 409, 439, 443, 449, 461, 463, 487, 491, 499, 509, 541, 547, 577, 587
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Comments

Primes == 0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, or 18 (mod 23). - Robert Israel, Dec 26 2017

Programs

  • Maple
    Load the Maple program HH given in A296920. Then run HH(-23, 200); This produces A191021, A191065, A296932.
    Alternative:
    select(isprime, [2,seq(seq(46*i+j,j=[1, 3, 9, 13, 23, 25, 27, 29, 31, 35, 39, 41]),i=0..30)]); # Robert Israel, Dec 26 2017

A369863 Inert rational primes in the field Q(sqrt(-21)).

Original entry on oeis.org

13, 29, 43, 47, 53, 59, 61, 67, 73, 79, 83, 97, 113, 127, 131, 137, 149, 151, 157, 163, 167, 181, 197, 211, 227, 229, 233, 241, 251, 281, 311, 313, 317, 331, 349, 379, 383, 389, 397, 401, 409, 419, 433, 449, 463, 467, 479, 487, 499, 503, 547, 557, 563, 569, 571, 577, 587
Offset: 1

Views

Author

Dimitris Cardaris, Feb 03 2024

Keywords

Comments

Primes p such that Legendre(-21,p) = -1.

Crossrefs

Cf. inert rational primes in the imaginary quadratic field Q(sqrt(-d)) for the first squarefree positive integers d: A002145 (1), A003628 (2), A003627 (3), A003626 (5), A191059 (6), A003625 (7), A296925 (10), A191060 (11), A105885 (13), A191061 (14), A191062 (15), A296930 (17), A191063 (19), this sequence (21), A191064 (22), A191065 (23).

Programs

  • Mathematica
    Select[Range[3,600], PrimeQ[#] && JacobiSymbol[-21,#]==-1 &] (* Stefano Spezia, Feb 04 2024 *)
  • SageMath
    [p for p in prime_range(3, 600) if legendre_symbol(-21, p) == -1]
Showing 1-5 of 5 results.