0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 3, 1, 1, 0, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 0, 1, 1, 0, 0, 1, 3, 3, 1, 1, 0, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 3, 0, 1, 3, 0, 1, 3, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 3, 1, 0, 3, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 3, 3, 0, 3, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 3, 1, 1, 3, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 3, 0, 3, 0, 1, 3, 1, 3, 0, 0, 0, 3, 1, 3, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 3, 3
Offset: 1
A256580
Number of quadruples (x, x+1, x+2, x+3) with 1 < x < p-3 of consecutive integers whose product is 1 mod p.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 0, 3, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 4, 2, 0, 2, 0, 0, 2, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 4, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 4, 2, 2, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 4, 0, 2, 2, 0, 0, 4, 4, 0, 4, 2, 0, 0
Offset: 1
p=7, x_1=2, 2*3*4*5 == 1 (mod 7), T={2}, |T|=1;
p=17, x_1=2, 2*3*4*5 == 1 (mod 17), x_2=12, 12*13*14*15 == 1 (mod 17), T={2,12}, |T|=2;
p=23, x_1=5, 5*6*7*8 == 1 (mod 23), x_2=15, 15*16*17*18 == 1 (mod 23), x_3=19, 19*20*21*22 == 1 (mod 23), T={5,15,19}, |T|=3.
A254678
Primes p with the property that there are four consecutive integers less than p whose product is 1 mod p.
Original entry on oeis.org
7, 17, 23, 31, 41, 47, 73, 89, 97, 103, 127, 137, 151, 167, 199, 223, 233, 239, 241, 257, 271, 281, 311, 313, 353, 359, 367, 383, 409, 431, 433, 439, 449, 479, 487, 503, 521, 577, 593, 601, 607, 647, 673, 719, 727, 743, 751, 761, 769, 839, 857, 881, 887, 911, 929, 937, 953, 967, 977, 983
Offset: 1
p=7: 2*3*4*5=120 == 1 mod 7;
p=17: 2*3*4*5=120 == 1 mod 17 AND 12*13*14*15=32760 == 1 mod 17; for p=13: no triple == 1 mod 13;
p=23: 5*6*7*8 == 1 mod 23 AND 15*16*17*18== 1 mod 23 AND 19*20*21*22 == 1 mod 23; and so on. For the number of quadruples for a prime, see A256580.
-
fsiQ[n_]:=AnyTrue[Times@@@Partition[Range[n-1],4,1],Mod[#,n]==1&]; Select[ Prime[Range[200]],fsiQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 02 2019 *)
-
lista(nn) = forprime(p=2, nn, if (sum(x=1, p-4, ((x*(x+1)*(x+2)*(x+3)) % p) == 1) > 0, print1(p, ", "))); \\ Michel Marcus, Apr 03 2015
-
library(numbers)
IP <- vector()
t <- vector()
S <- vector()
IP <- c(Primes(1000))
for (j in 1:(length(IP))){
for (i in 2:(IP[j]-4)){
t[i-1] <- as.vector(mod((i*(i+1)*(i+2)*(i+3)),IP[j]))
Z[j] <- sum(which(t==1))
S[j] <- length(which(t==1))
}
}
IP[S!=0]
#Carefully increase Primes(1000). It takes several hours for 100000.
A256592
Let p = prime(n); a(n) = number of pairs (x,i) with i >= 2 and 2 <= x <= p-i such that x*(x+1)*(x+2)*...*(x+i-1) == 1 mod p.
Original entry on oeis.org
0, 0, 1, 2, 6, 3, 8, 7, 13, 15, 13, 11, 13, 22, 18, 25, 36, 31, 34, 53, 42, 38, 38, 40, 55, 47, 41, 37, 77, 59, 62, 67, 66, 63, 55, 84, 74, 78, 90, 74, 90, 92, 85, 108, 100, 117, 98, 104, 136, 114, 118, 118, 141, 112, 118, 115, 122, 138, 132, 129, 115, 152
Offset: 1
prime(1)=2: There is no such product
=> a(1)=0;
prime(2)=3: There is no such product
=> a(2)=0;
prime(3)=5: 2*3=6==1 mod 5
=> i=1, x=2; a(3)=1;
prime(4)=7: 4*5*6==1 mod 7; 2*3*4*5==1 mod 7
=> a(3)=2;
prime(5)=11: 3*4==1 mod 11; 7*8==1 mod 11; 5*6*7==1 mod 11; 3*4*5*6*7==1 mod 11; 6*7*8*9*10==1 mod 11; 2*3*4*5*6*7*8*9==1 mod 11
=> x in {3,7,5,3,6,2}
=> a(5)=6.
-
f[n_] := Block[{r = Range[2, Prime[n] - 1]}, Sum[Length@ Select[Times @@@ Partition[r, k, 1], Mod[#, Prime@ n] == 1 &], {k, 2, Prime@ n}]]; Array[f, 72] (* Michael De Vlieger, Apr 03 2015 *)
-
library(numbers)
p <- vector()
n <- vector()
NumTup <- vector()
p <- Primes(m)
n <- length(p)
m <- 17 #all primes will be checked up to this number
Piprod <- matrix(0,m,m) #Matrix with zeros
#loop: every ordered combination of products
for (i in 2:m)
for (j in 2:m)
Piprod[j,i] <- ifelse(i
Comments