A191363 Numbers m such that sigma(m) = 2*m - 2.
3, 10, 136, 32896, 2147516416
Offset: 1
Examples
For n=1, a(1) = 3 since sigma(3) = 4 = 2*3 - 2.
Links
- Gianluca Amato, Maximilian Hasler, Giuseppe Melfi, and Maurizio Parton, Primitive weird numbers having more than three distinct prime factors, Riv. Mat. Univ. Parma, 7(1), (2016), 153-163, arXiv:1803.00324 [math.NT], 2018.
Crossrefs
Programs
-
Magma
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -2]; // Vincenzo Librandi, Sep 15 2016
-
Mathematica
ok[n_] := DivisorSigma[1,n] == 2*n-2; Select[ Table[ 2^(2^k-1) * (2^(2^k)+1), {k, 0, 5}], ok] (* Jean-François Alcover, Sep 14 2011, after conjecture *) Select[Range[10^6], DivisorSigma[1, #] == 2 # - 2 &] (* Michael De Vlieger, Sep 14 2016 *)
-
PARI
zp(a,b) = {my(c,c1,s); c = a; c1 = 2*c-2; while(c
-
PARI
a(k)=(2^2^k+1)<<(2^k-1) \\ For k<6. - M. F. Hasler, Jul 27 2016
Comments