cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A077374 Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1

Views

Author

Jason Earls, Nov 30 2002

Keywords

Comments

Apart from {1, 3, 5, 7, 9, 11, 15, 21, 315}, subset of A088012. Probably finite. - Charles R Greathouse IV, Mar 28 2011
a(15) > 10^13. - Giovanni Resta, Mar 29 2013
The abundance of the given terms a(1..14) is: (-1, -2, -4, -6, -5, -10, -6, -10, -6, -6, 6, 6, 6, -6). See also A171929, A188263 and A188597 for numbers with abundancy sigma(n)/n close to 2. - M. F. Hasler, Feb 21 2017
a(15) > 10^22. - Wenjie Fang, Jul 13 2017

Examples

			sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))

Extensions

a(14) from Farideh Firoozbakht, Jan 12 2004

A141548 Numbers n whose deficiency is 6.

Original entry on oeis.org

7, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1

Views

Author

Keywords

Comments

a(9) > 10^12. - Donovan Johnson, Dec 08 2011
a(9) > 10^13. - Giovanni Resta, Mar 29 2013
a(9) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
For all k in A059242, the number m = 2^(k-1)*(2^k+5) is in this sequence. This yields further terms 2^46*(2^47+5), 2^52*(2^53+5), 2^140*(2^141+5), ... All even terms known so far and the initial 7 = 2^0*(2^1+5) are of this form. All odd terms beyond a(2) are of the form a(n) = a(k)*p*q, k < n. We have proved that there is no further term of this form with the a(k) given so far. - M. F. Hasler, Apr 23 2015
A term n of this sequence multiplied by a prime p not dividing it is abundant if and only if p < sigma(n)/6 = n/3-1. For the even terms 592 and 2102272, there is such a prime near this limit (191 resp. 693571) such that n*p is a primitive weird number, cf. A002975. For a(3)=52, the largest such prime, 11, is already too small. Odd weird numbers do not exist within these limits. - M. F. Hasler, Jul 19 2016
Any term x of this sequence can be combined with any term y of A087167 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			a(1) = 7, since 2*7 - sigma(7) = 14 - 8 = 6. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A087485 (odd terms).
Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A141550 (deficiency 14), A125248 (deficiency 16), A223608 (deficiency 18), A223607 (deficiency 20).
Cf. A087167 (abundance 6).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -6]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n+6,AppendTo[lst,n]],{n,10^4}];Print[lst];
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 6 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    is(n)=sigma(n)==2*n-6 \\ Charles R Greathouse IV, Apr 23 2015, corrected by M. F. Hasler, Jul 18 2016
    

Extensions

a(8) from Donovan Johnson, Dec 08 2011

A246955 Numbers j for which the symmetric representation of sigma(j) has two parts, each of width one.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 106, 107, 109, 113, 116, 118, 122, 124, 127, 131, 134, 136, 137, 139, 142, 146, 148, 149, 151, 152, 157, 158, 163, 164, 166, 167, 172, 173, 178, 179, 181, 184, 188, 191, 193, 194, 197, 199
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 08 2014

Keywords

Comments

The sequence is the intersection of A239929 (sigma(j) has two parts) and of A241008 (sigma(j) has an even number of parts of width one).
The numbers in the sequence are precisely those defined by the formula for the triangle, see the link. The symmetric representation of sigma(j) has two parts, each part having width one, precisely when j = 2^(k - 1) * p where 2^k <= row(j) < p, p is prime and row(j) = floor((sqrt(8*j + 1) - 1)/2). Therefore, the sequence can be written naturally as a triangle as shown in the Example section.
The symmetric representation of sigma(j) = 2*j - 2 consists of two regions of width 1 that meet on the diagonal precisely when j = 2^(2^m - 1)*(2^(2^m) + 1) where 2^(2^m) + 1 is a Fermat prime (see A019434). This subsequence of numbers j is 3, 10, 136, 32896, 2147516416, ...[?]... (A191363).
The k-th column of the triangle starts in the row whose initial entry is the first prime larger than 2^(k+1) (that sequence of primes is A014210, except for 2).
Observation: at least the first 82 terms coincide with the numbers j with no middle divisors whose largest divisor <= sqrt(j) is a power of 2, or in other words, coincide with the intersection of A071561 and A365406. - Omar E. Pol, Oct 11 2023

Examples

			We show portions of the first eight columns, 0 <= k <= 7, of the triangle.
0    1    2     3     4     5     6     7
3
5    10
7    14
11   22   44
13   26   52
17   34   68    136
19   38   76    152
23   46   92    184
29   58   116   232
31   62   124   248
37   74   148   296   592
41   82   164   328   656
43   86   172   344   688
47   94   188   376   752
53   106  212   424   848
59   118  236   472   944
61   122  244   488   976
67   134  268   536   1072  2144
71   142  284   568   1136  2272
.    .    .     .     .     .
.    .    .     .     .     .
127  254  508   1016  2032  4064
131  262  524   1048  2096  4192  8384
137  274  548   1096  2192  4384  8768
.    .    .     .     .     .     .
.    .    .     .     .     .     .
251  502  1004  2008  4016  8032  16064
257  514  1028  2056  4112  8224  16448  32896
263  526  1052  2104  4208  8416  16832  33664
Since 2^(2^4) + 1 = 65537 is the 6543rd prime, column k = 15 starts with 2^15*(2^(2^16) + 1) = 2147516416 in row 6542 with 65537 in column k = 0.
For an image of the symmetric representations of sigma(m) for all values m <= 137 in the triangle see the link.
The first column is the sequence of odd primes, see A065091.
The second column is the sequence of twice the primes starting with 10, see A001747.
The third column is the sequence of four times the primes starting with 44, see A001749.
For related references also see A033676 (largest divisor of n less than or equal to sqrt(n)).
		

Crossrefs

Programs

  • Mathematica
    (* functions path[] and a237270[ ] are defined in A237270 *)
    atmostOneDiagonalsQ[n_]:=SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], - 1] - path[n - 1], 1]]]
    (* data *)
    Select[Range[200], Length[a237270[#]]==2 && atmostOneDiagonalsQ[#]&]
    (* function for computing triangle in the Example section through row 55 *)
    TableForm[Table[2^k Prime[n], {n, 2, 56}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth->2]

Formula

Formula for the triangle of numbers associated with the sequence:
P(n, k) = 2^k * prime(n) where n >= 2, 0 <= k <= floor(log_2(prime(n)) - 1).

A125246 Numbers m whose abundance sigma(m) - 2m = -4. Numbers whose deficiency is 4.

Original entry on oeis.org

5, 14, 44, 110, 152, 884, 2144, 8384, 18632, 116624, 8394752, 15370304, 73995392, 536920064, 2147581952, 34360131584, 27034175140420610, 36028797421617152, 576460753914036224
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

a(17) > 10^12. - Donovan Johnson, Dec 08 2011
a(17) > 10^13. - Giovanni Resta, Mar 29 2013
a(17) <= b(28) = 36028797421617152 ~ 3.6*10^16, since b(k) := 2^(k-1)*(2^k+3) is in this sequence for all k in A057732, i.e., whenever 2^k+3 is prime, and 28 = A057732(11). Further terms of this form are b(30), b(55), b(67), b(84), ... The only terms not of the form b(k), below 10^13, are {110, 884, 18632, 116624, 15370304, 73995392}. - M. F. Hasler, Apr 27 2015, edited on Jul 17 2016
See A191363 for numbers with deficiency 2, and A141548 for numbers with deficiency 6. - M. F. Hasler, Jun 29 2016 and Jul 17 2016
A term of this sequence multiplied with a prime p not dividing it is abundant if and only if p < sigma(a(n))/4. For each of a(2..16) there is such a prime, near this limit, such that a(n)*p is a primitive weird number, cf. A002975. - M. F. Hasler, Jul 17 2016
Any term x of this sequence can be combined with any term y of A088832 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Is 5 the only odd number in this sequence? Is it possible to prove this? - M. F. Hasler, Feb 22 2017
a(20) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
If m is an even term, then (m-2)/2 is a term of A067680. - Jinyuan Wang, Apr 08 2020

Examples

			The abundance of 5 = (1+5)-10 = -4.
More generally, whenever p = 2^k + 3 is prime (as p = 5 for k = 1), then A(2^(k-1)*p) = (2^k-1)*(p+1) - 2^k*p = 2^k - p - 1 = -4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -4]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - 2 # == -4 &] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-4),print1(n,",")))
    

Extensions

a(11) to a(14) from Klaus Brockhaus, Nov 29 2006
a(15)-a(16) from Donovan Johnson, Dec 23 2008
a(17)-a(19) from Hiroaki Yamanouchi, Aug 21 2018

A295296 Numbers n such that the sum of their divisors + the number of ones in their binary expansion = 2n; numbers for which A000203(n) + A000120(n) = 2n.

Original entry on oeis.org

1, 2, 3, 4, 8, 10, 16, 32, 64, 128, 136, 256, 315, 512, 1024, 2048, 4096, 8192, 16384, 32768, 32896, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 2147516416
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2017

Keywords

Comments

Numbers n such that their binary weight is equal to their deficiency.
Numbers n such that A000120(n) = A033879(n), or equally A000203(n) = A005187(n), or equally A001065(n) = A011371(n).
2^(2^k-1) * (2^(2^k) + 1) is in the sequence if and only if (2^(2^k) + 1) is a (Fermat) prime (A019434) which as of today is known to be the case for 0 <= k <= 4 giving the terms 3, 10, 136, 32896 and 2147516416. - David A. Corneth, Nov 26 2017
It would be nice to know whether 315 is the only term that is neither in A191363 nor a power of two.
Any term that is either a square or twice a square (in A028982) must be odious (in A000069), and vice versa.
If there's an odd term below 10^30 besides 315 then it must be divisible by a prime >= 23. - David A. Corneth, Nov 27 2017
221753180448460815 is odd and also a term of this sequence. - Alexander Violette, Dec 24 2020

Examples

			A000203(315) = 1 + 3 + 5 + 7 + 9 + 15 + 21 + 35 + 45 + 63 + 105 + 315 = 624. 2*315 - 624 = 6, and when 315 is written in binary, 100111011, we see that it has six 1-bits. Thus 315 is included in the sequence.
		

Crossrefs

Positions of zeros in A294898 and A294899.
Subsequence of A005100 and also of A295298.
Subsequences: A000079, A191363 (the five known terms).

Programs

  • Mathematica
    Select[Range[2^20], DivisorSigma[1, #] + DigitCount[#, 2, 1] == 2 # &] (* Michael De Vlieger, Nov 26 2017 *)
  • PARI
    for(n=1, oo, if(sigma(n)+hammingweight(n) == 2*n, print1(n, ", ")));

Extensions

Terms a(35) and beyond from Giovanni Resta, Feb 27 2020

A088831 Numbers k whose abundance is 2: sigma(k) - 2k = 2.

Original entry on oeis.org

20, 104, 464, 650, 1952, 130304, 522752, 8382464, 134193152, 549754241024, 8796086730752, 140737463189504, 144115187270549504
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

A subset of A045768.
If 2^k-3 is prime (k is a term of A050414) then 2^(k-1)*(2^k-3) is in the sequence; this fact is a result of the following interesting theorem that I have found. Theorem: If j is an integer and 2^k-(2j+1) is prime then 2^(k-1)*(2^k-(2j+1)) is a solution of the equation sigma(x)=2(x+j). - Farideh Firoozbakht, Feb 23 2005
Note that the fact "if 2^p-1 is prime then 2^(p-1)*(2^p-1) is a perfect number" is also a trivial result of this theorem. All known terms of this sequence are of the form 2^(k-1)*(2^k-3) where 2^k-3 is prime. Conjecture: There are no terms of other forms. So the next terms of this sequence are likely 549754241024, 8796086730752, 140737463189504, 144115187270549504, 2^93*(2^94-3), 2^115*(2^116-3), 2^121*(2^122-3), 2^149*(2^150-3), etc. - Farideh Firoozbakht, Feb 23 2005
The conjecture in the previous comment is incorrect. The first counterexample is 650, which has factorization 2*5^2*13. - T. D. Noe, May 10 2010
a(11) > 10^12. - Donovan Johnson, Dec 08 2011
a(12) > 10^13. - Giovanni Resta, Mar 29 2013
a(14) > 10^18. - Hiroaki Yamanouchi, Aug 23 2018
Any term x of this sequence can be combined with any term y of A191363 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
Is there any odd term in this sequence? - Jenaro Tomaszewski, Jan 06 2021
If there exists any odd term in this sequence, it must be weird, so it must exceed 10^28. - Alexander Violette, Jan 02 2022

Examples

			Abundances of terms in A045768: {-1,2,2,2,2,2,2,2,2,2} so 1 is not here.
		

References

  • Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, p. 13, 1997.
  • Guy, R. K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." Sec. B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-53, 1994.

Crossrefs

Cf. A033880, A045768, A050414, A191363 (deficiency 2).

Programs

Formula

Solutions to sigma(x)-2*x = 2.

Extensions

One more term from Farideh Firoozbakht, Feb 23 2005
Comment and example corrected by T. D. Noe, May 10 2010
a(10) from Donovan Johnson, Dec 08 2011
a(11) from Giovanni Resta, Mar 29 2013
a(12) from Jud McCranie, Jun 18 2017
a(13) from Hiroaki Yamanouchi, Aug 23 2018

A125248 Numbers n whose abundance sigma(n)-2n = -16. Numbers n whose deficiency is 16.

Original entry on oeis.org

17, 38, 92, 170, 248, 752, 988, 2528, 8648, 12008, 34688, 63248, 117808, 526688, 531968, 820808, 1292768, 1495688, 2095208, 2112512, 3477608, 4495808, 8419328, 12026888, 13192768, 16102808, 26347688, 29322008, 33653888, 169371008
Offset: 1

Views

Author

Jason G. Wurtzel, Nov 25 2006

Keywords

Comments

When p=2^k+15 is prime (cf. A057197), then 2^(k-1)*p is in this sequence. The terms { 17, 38, 92, 248, 752, 2528, 34688, 531968, 2112512, 8419328, 537116672, 2147975168, ...} are of this from, with k in {1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, ...} = A057197. - M. F. Hasler, Jul 18 2016
Any term x of this sequence can be combined with any term y of A141547 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			The abundance of 38 = (1+2+19+38)-76 = -16
		

Crossrefs

Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A141550 (deficiency 14), A125248 (this), A223608 (deficiency 18), A223607 (deficiency 20); A141547 (abundance 16).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -16]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    Select[Range[1, 10^6], DivisorSigma[1, #] - 2 # == - 16 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    for(n=1,1000000,if(((sigma(n)-2*n)==-16),print1(n,",")))
    

Extensions

a(17) to a(30) from Klaus Brockhaus, Nov 29 2006

A262259 Numbers k such that the symmetric representation of sigma(k) has only two parts and they meet at the center of the Dyck path.

Original entry on oeis.org

3, 10, 78, 136, 666, 820, 1830, 2628, 4656, 5886, 6328, 16290, 18528, 28920, 32896, 39340, 48828, 56616, 62128, 78606, 80200, 83436, 88410, 93528, 100576, 104196, 135460, 146070, 166176, 180300, 187578, 190036
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 16 2015

Keywords

Comments

For a proof of the formula see the link and also the links in A239929 and A071561. This formula allows for a fast computation of numbers in the sequence that does not require computations of Dyck paths.
Subsequence of A239929.
A191363 is a subsequence.
All terms are triangular numbers.
More precisely, all terms are second hexagonal numbers (A014105). There are no terms with middle divisors. - Omar E. Pol, Oct 31 2018
Numbers k such that the concatenation of the widths of the symmetric representation of sigma(k) is a cyclops numbers (A134808). - Omar E. Pol, Aug 29 2021

Examples

			q = 128 = 2^7 is the 15th term in A174973 for which 2*n+1 = 2^8 + 1 is prime so that a(15) = 2^7 * (2^8 + 1) = 32896. The two parts in the symmetric representation of sigma of a(15) have width 1 and sigma(a(15)) = 2 * a(15) - 2.
q = 308 is the 32nd term in A174973 for which 2*n+1 is prime so that a(32) = 308 * 617 = 190036. The maximum width of the two regions is 2 and sigma(a(32)) = 415296.
For n = 21, the symmetric representation of sigma(21) has two parts that meet at the center of the Dyck path, but 21 is not in the sequence because the symmetric representation of sigma(21) has more than two parts. - _Omar E. Pol_, Sep 18 2015
From _Omar E. Pol_, Oct 05 2015: (Start)
Illustration of initial terms (n = 1, 2):
. y
.  |
.  |_ _ _ _ _ _
.  |_ _ _ _ _  |
.  |         | |_
.  |         |_ _|_
.  |             | |_ _
.  |             |_ _  |
.  |                 | |
.  |_ _              | |
.  |_ _|_            | |
.  |   | |           | |
.  |_ _|_|_ _ _ _ _ _|_|_ _ x
.       3             10
.
The symmetric representation of sigma(3) = 2 + 2 = 4 has two parts and they meet at the point (2, 2), so a(1) = 3.
The symmetric representation of sigma(10) = 9 + 9 = 18 has two parts and they meet at the point (7, 7), so a(2) = 10.
(End)
Also 10 is in the sequence because the concatenation of the widths of the symmetric representation of sigma(10) is 1111111110111111111 and it is a cyclops number (A134808). - _Omar E. Pol_, Aug 29 2021
		

Crossrefs

Programs

  • Mathematica
    (* test for membership in A174973 *)
    a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}]
    a174973[n_]:=Select[Range[n], a174973Q]
    (* compute numbers in the sequence *)
    a262259[n_]:=Map[#(2#+1)&, Select[a174973[1, n], PrimeQ[2#+1]&]]
    a262259[308] (* data *)

Formula

Terms are equal to q*(2*q + 1) where q is in A174973 and 2*q + 1 is prime.

A141549 Numbers k whose deficiency is 12: 2k - sigma(k) = 12.

Original entry on oeis.org

13, 45, 76, 688, 8896, 133888, 537051136, 35184418226176, 144115191028645888, 2305843021024854016
Offset: 1

Views

Author

Keywords

Comments

Numbers n whose abundance is -12. No other terms up to n=100,000,000. - Jason G. Wurtzel, Aug 24 2010
For all k in A102633, the number 2^(k-1)*(2^k+11) is in this sequence. So far all terms except a(2) are of this form. For k = 55, 71, this yields terms 649037107316853651724695645454336, 2787593149816327892704951291908936712585216. - M. F. Hasler, Apr 23 2015; edited by Max Alekseyev, May 27 2025
Any term x = a(m) can be combined with any term y = A141545(n) to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2. Although this property is a necessary condition for two numbers to be amicable, it is not a sufficient one. So far, these two sequences have not produced an amicable pair. However, if one is ever found, then it will exhibit x-y = 12. - Timothy L. Tiffin, Sep 13 2016
a(11) > 10^20. - Max Alekseyev, May 27 2025

Examples

			a(1) = 13, since 2*13 - sigma(13) = 26 - 14 = 12. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141550 (deficiency 14), A125248 (deficiency 16), A223608 (deficiency 18), A223607 (deficiency 20); A141545 (abundance 12).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -12]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n+12,AppendTo[lst,n]],{n,10^4}];Print[lst];
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 12 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    for(n=1, 10^8, if(((sigma(n)-2*n)==-12), print1(n, ", "))) \\ Jason G. Wurtzel, Aug 24 2010
    

Extensions

a(7) from Donovan Johnson, Dec 08 2011
a(8)-a(9) from Hiroaki Yamanouchi, Aug 21 2018
a(10) from Max Alekseyev, May 27 2025

A141550 Numbers n whose deficiency is 14.

Original entry on oeis.org

27, 34, 232, 34432, 549762629632
Offset: 1

Views

Author

Keywords

Comments

a(6) > 10^12. - Donovan Johnson, Dec 08 2011
a(6) > 10^13. - Giovanni Resta, Mar 29 2013
a(6) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
a(6) <= b(38) = 37778931864743868104704 = 3.77789*10^22, since b(k) = 2^(k-1)*(2^k+13) is in this sequence for all k in A102634, i.e., 2^k+13 is prime. All known terms except a(1) = 27 are of this form: a(2..5) = b(k) with k = 2, 4, 8, 20, and k = 38 yields the next larger term of this form. - M. F. Hasler, Jul 18 2016
Any term x of this sequence can be combined with any term y of A141546 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			a(1) = 27, since 2*27 - sigma(27) = 54 - 40 = 14. - _Timothy L. Tiffin_, Sep 13 2016
		

Crossrefs

Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A125248 (deficiency 16); A141546 (abundance 14).

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -14]; // Vincenzo Librandi, Sep 14 2016
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n+14,AppendTo[lst,n]],{n,10^4}];Print[lst];
    Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 14 &] (* Vincenzo Librandi, Sep 14 2016 *)

Extensions

a(5) from Donovan Johnson, Dec 08 2011
Showing 1-10 of 21 results. Next