1, 1, 0, 1, 0, -1, 1, 0, -2, 0, 1, 0, -3, 0, 1, 1, 0, -4, 0, 3, 0, 1, 0, -5, 0, 6, 0, -1, 1, 0, -6, 0, 10, 0, -4, 0, 1, 0, -7, 0, 15, 0, -10, 0, 1, 1, 0, -8, 0, 21, 0, -20, 0, 5, 0, 1, 0, -9, 0, 28, 0, -35, 0, 15, 0, -1, 1, 0, -10, 0, 36, 0, -56, 0, 35, 0, -6, 0, 1, 0, -11, 0, 45, 0, -84, 0, 70, 0, -21, 0, 1
Offset: 0
The triangle begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 0
2: 1 0 -1
3: 1 0 -2 0
4: 1 0 -3 0 1
5: 1 0 -4 0 3 0
6: 1 0 -5 0 6 0 -1
7: 1 0 -6 0 10 0 -4 0
8: 1 0 -7 0 15 0 -10 0 1
9: 1 0 -8 0 21 0 -20 0 5 0
10: 1 0 -9 0 28 0 -35 0 15 0 -1
... Reformatted. - _Wolfdieter Lang_, Dec 17 2013
E.g., fourth row (n=3) corresponds to polynomial S(3,x)= x^3-2*x.
Triangle of absolute values of coefficients (coefficients of Fibonacci polynomials) with exponents in increasing order begins:
[1]
[0, 1]
[1, 0, 1]
[0, 2, 0, 1]
[1, 0, 3, 0, 1]
[0, 3, 0, 4, 0, 1]
[1, 0, 6, 0, 5, 0, 1]
[0, 4, 0, 10, 0, 6, 0, 1]
[1, 0, 10, 0, 15, 0, 7, 0, 1]
[0, 5, 0, 20, 0, 21, 0, 8, 0, 1]
See A162515 for the Fibonacci polynomials with reversed row entries, starting there with row 1. - _Wolfdieter Lang_, Dec 16 2013
Comments