cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A283113 Triangle read by rows: T(n,k) is the number of nonequivalent ways (mod D_3) to place k points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal (n >= 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 5, 1, 5, 19, 23, 3, 1, 7, 38, 82, 40, 1, 1, 8, 66, 230, 242, 45, 1, 10, 110, 560, 1038, 533, 29, 1, 12, 170, 1208, 3504, 3546, 821, 6, 1, 14, 255, 2392, 9998, 16917, 9137, 807, 1, 16, 365, 4405, 25158, 64345, 63755, 17408, 422
Offset: 1

Views

Author

Heinrich Ludwig, Mar 10 2017

Keywords

Comments

Length of n-th row is A004396(n) + 1, for 1 <= n <= 21, where A004396(n) is the maximal number of points that can be placed under the condition mentioned above.
Rotations and reflections of placements are not counted. If they are to be counted, see A193986.
In terms or triangular chess: Number of nonequivalent ways (mod D_3) to arrange k nonattacking rooks on an n X n X n board, k>=0, n>=1.

Examples

			The table begins with T(1,0), T(1,1);
  1,  1;
  1,  1;
  1,  2,   1;
  1,  3,   3,   1;
  1,  4,   9,   5;
  1,  5,  19,  23,    3;
  1,  7,  38,  82,   40,   1;
  1,  8,  66, 230,  242,  45;
  1, 10, 110, 560, 1038, 533, 29;
  ...
		

Crossrefs

Row sums give A283117.

A289709 Number of independent vertex sets and vertex covers in the n-triangular honeycomb queen graph.

Original entry on oeis.org

2, 4, 10, 28, 84, 272, 946, 3486, 13560, 55432, 236852, 1054928, 4881972, 23420436, 116204016, 595246848, 3142169416, 17068245184, 95267426432, 545732236936, 3204607199704
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Formula

From Andrew Howroyd, Sep 12 2019: (Start)
a(n) = 6*A283117(n) - 2*A326611(n) - 3*2^ceiling(n/2).
a(n) = 1 + Sum_{k>=1} A193986(n,k).
(End)

Extensions

a(13)-a(21) from Andrew Howroyd, Sep 12 2019

A193981 Number of ways to arrange 3 nonattacking triangular rooks on an nXnXn triangular grid.

Original entry on oeis.org

0, 0, 0, 2, 23, 127, 468, 1352, 3310, 7190, 14260, 26330, 45885, 76237, 121688, 187712, 281148, 410412, 585720, 819330, 1125795, 1522235, 2028620, 2668072, 3467178, 4456322, 5670028, 7147322, 8932105, 11073545, 13626480, 16651840, 20217080
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Comments

Column 3 of A193986

Examples

			Some solutions for 5X5X5
......0..........0..........0..........0..........0..........0..........0
.....0.0........0.0........0.0........0.0........0.1........0.0........0.1
....0.0.1......1.0.0......0.1.0......0.1.0......0.0.0......0.1.0......1.0.0
...0.1.0.0....0.0.0.1....1.0.0.0....0.0.0.1....1.0.0.0....1.0.0.0....0.0.0.0
..1.0.0.0.0..0.1.0.0.0..0.0.1.0.0..0.0.1.0.0..0.0.1.0.0..0.0.0.0.1..0.0.0.1.0
		

Formula

Empirical: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8)
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -x^4*(2 + 11*x + 17*x^2)/((-1+x)^7*(1+x))
Empirical: a(n) = 13*n/24 - 11*n^2/24 - 23*n^3/48 + 9*n^4/16 - 3*n^5/16 + n^6/48 + 1/4*floor(n/2)
(End)

A193982 Number of ways to arrange 4 nonattacking triangular rooks on an nXnXn triangular grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 18, 233, 1449, 6213, 20993, 59943, 150903, 344323, 726033, 1434678, 2685046, 4798206, 8240022, 13669026, 21995586, 34453386, 52685556, 78846471, 115721991, 166869131, 236778399, 331059729, 456655745, 622083189, 837706779
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Comments

Column 4 of A193986

Examples

			Some solutions for 6X6X6
.......0............0............0............0............0............0
......0.0..........0.0..........1.0..........0.0..........0.1..........0.0
.....0.0.1........1.0.0........0.0.0........0.1.0........1.0.0........1.0.0
....0.1.0.0......0.0.0.1......0.0.0.1......0.0.0.1......0.0.0.0......0.0.1.0
...1.0.0.0.0....0.1.0.0.0....0.0.1.0.0....1.0.0.0.0....0.0.0.1.0....0.1.0.0.0
..0.0.0.0.1.0..0.0.0.0.1.0..0.1.0.0.0.0..0.0.1.0.0.0..0.0.1.0.0.0..0.0.0.0.0.1
		

Formula

Empirical: a(n) = 6*a(n-1) -12*a(n-2) +2*a(n-3) +27*a(n-4) -36*a(n-5) +36*a(n-7) -27*a(n-8) -2*a(n-9) +12*a(n-10) -6*a(n-11) +a(n-12)
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -x^6*(18 + 125*x + 267*x^2 + 279*x^3 + 151*x^4)/((-1+x)^9*(1+x)^3)
Empirical: a(n) = 87*n/40 - 57*n^2/32 - 253*n^3/96 + 1385*n^4/384 - 139*n^5/80 + 27*n^6/64 - 5*n^7/96 + n^8/384 + (3 - 11*n/8 + n^2/8)*floor(n/2)
(End)

A193983 Number of ways to arrange 5 nonattacking triangular rooks on an n X n X n triangular grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 270, 3195, 21273, 101484, 386052, 1243899, 3527469, 9035376, 21297492, 46838142, 97131762, 191517192, 361427508, 656353494, 1152094086, 1961910990, 3251400894, 5257953789, 8315944731, 12888836064, 19609755396
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Examples

			Some solutions for 7 X 7 X 7
........0..............0..............0..............0..............0
.......0.0............0.0............0.0............0.0............0.0
......0.1.0..........0.1.0..........0.0.1..........1.0.0..........0.0.1
.....1.0.0.0........0.0.0.1........1.0.0.0........0.0.0.1........0.1.0.0
....0.0.0.0.1......1.0.0.0.0......0.0.0.1.0......0.1.0.0.0......1.0.0.0.0
...0.0.0.1.0.0....0.0.1.0.0.0....0.1.0.0.0.0....0.0.0.0.1.0....0.0.0.0.1.0
..0.0.1.0.0.0.0..0.0.0.0.1.0.0..0.0.0.0.1.0.0..0.0.1.0.0.0.0..0.0.0.1.0.0.0
		

Crossrefs

Column 5 of A193986.

Formula

Empirical: a(n) = 5*a(n-1) -5*a(n-2) -14*a(n-3) +30*a(n-4) +6*a(n-5) -50*a(n-6) +10*a(n-7) +44*a(n-8) -44*a(n-10) -10*a(n-11) +50*a(n-12) -6*a(n-13) -30*a(n-14) +14*a(n-15) +5*a(n-16) -5*a(n-17) +a(n-18).
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -3*x^7*(2 + 80*x + 625*x^2 + 2244*x^3 + 4898*x^4 + 7197*x^5 + 7237*x^6 + 5030*x^7 + 2294*x^8 + 633*x^9)/((-1+x)^11*(1+x)^5*(1+x+x^2)).
Empirical: a(n) = 3461*n/320 - 469*n^2/240 - 469*n^3/15 + 2383*n^4/64 - 76607*n^5/3840 + 23693*n^6/3840 - 2263*n^7/1920 + 53*n^8/384 - 7*n^9/768 + n^10/3840 + 4/3*floor(n/3) + (1359/32 - 247*n/8 + 245*n^2/32 - 13*n^3/16 + n^4/32)*floor(n/2) - 4/3*floor((1 + n)/3).
(End)

A193984 Number of ways to arrange 6 nonattacking triangular rooks on an n X n X n triangular grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 166, 4902, 54771, 382439, 1976455, 8250687, 29309540, 91705972, 258870740, 671005444, 1618468198, 3670491998, 7891420850, 16191666766, 31878943876, 60501909500, 111108316262, 198083991586, 343784805209
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Examples

			Some solutions for 9 X 9 X 9
..........0..................0..................0..................0
.........0.0................0.0................0.0................0.1
........1.0.0..............0.0.0..............0.0.1..............0.0.0
.......0.0.0.0............1.0.0.0............0.0.0.0............1.0.0.0
......0.0.0.1.0..........0.0.0.1.0..........1.0.0.0.0..........0.0.0.0.0
.....0.0.1.0.0.0........0.1.0.0.0.0........0.0.0.1.0.0........0.0.0.1.0.0
....0.0.0.0.0.0.1......0.0.0.0.0.0.1......0.1.0.0.0.0.0......0.0.0.0.0.1.0
...0.1.0.0.0.0.0.0....0.0.0.0.0.1.0.0....0.0.0.0.1.0.0.0....0.0.1.0.0.0.0.0
..0.0.0.0.1.0.0.0.0..0.0.1.0.0.0.0.0.0..0.0.0.0.0.0.0.1.0..0.0.0.0.1.0.0.0.0
		

Crossrefs

Column 6 of A193986.

Formula

Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: Recurrence: a(n-29) - 4*a(n-28) + 17*a(n-26) - 9*a(n-25) - 32*a(n-24) + 7*a(n-23) + 51*a(n-22) + 26*a(n-21) - 77*a(n-20) - 59*a(n-19) + 58*a(n-18) + 74*a(n-17) + 21*a(n-16) - 74*a(n-15) - 74*a(n-14) + 21*a(n-13) + 74*a(n-12) + 58*a(n-11) - 59*a(n-10) - 77*a(n-9) + 26*a(n-8) + 51*a(n-7) + 7*a(n-6) - 32*a(n-5) - 9*a(n-4) + 17*a(n-3) - 4*a(n-1) + a(n) = 0.
Empirical: G.f.: -x^9*(166 + 4404*x + 39567*x^2 + 205744*x^3 + 734283*x^4 + 1960827*x^5 + 4120441*x^6 + 7036145*x^7 + 9956248*x^8 + 11823233*x^9 + 11839707*x^10 + 10002936*x^11 + 7077533*x^12 + 4145811*x^13 + 1957821*x^14 + 721991*x^15 + 191674*x^16 + 31709*x^17)/((-1+x)^13*(1+x)^7*(1+x^2)*(1+x+x^2)^3).
Empirical: a(n) = 98227*n/10080 + 39907*n^2/180 - 1105267*n^3/1920 + 6516731*n^4/11520 - 7025857*n^5/23040 + 4788163*n^6/46080 - 3842803*n^7/161280 + 34619*n^8/9216 - 9299*n^9/23040 + 29*n^10/1024 - 3*n^11/2560 + n^12/46080 + 25/4*floor(n/4) + (56 - 38*n/3 + 2*n^2/3)*floor(n/3) + (12053/16 - 32515*n/48 + 22687*n^2/96 - 8249*n^3/192 + 279*n^4/64 - 15*n^5/64 + n^6/192)*floor(n/2) - 3*floor((1+n)/4) + (-184/3 + 38*n/3 - 2*n^2/3)*floor((1+n)/3).
(End)

A193985 Number of ways to arrange 7 nonattacking triangular rooks on an nXnXn triangular grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 4842, 104448, 1127473, 8147469, 44813100, 201616740, 776296572, 2638333236, 8091512680, 22767562704, 59525327634, 146063694310, 339101167392, 749761416480, 1587403977944, 3233026755180, 6358705091310
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Comments

Column 7 of A193986

Examples

			Some solutions for 10X10X10
...........0....................0....................0
..........0.0..................0.0..................0.0
.........0.0.0................0.0.0................0.0.0
........1.0.0.0..............0.1.0.0..............0.0.0.1
.......0.0.0.0.1............0.0.0.0.1............0.0.1.0.0
......0.0.0.1.0.0..........1.0.0.0.0.0..........0.1.0.0.0.0
.....0.1.0.0.0.0.0........0.0.1.0.0.0.0........1.0.0.0.0.0.0
....0.0.0.0.0.0.1.0......0.0.0.0.0.0.1.0......0.0.0.0.0.0.1.0
...0.0.1.0.0.0.0.0.0....0.0.0.0.0.1.0.0.0....0.0.0.0.0.1.0.0.0
..0.0.0.0.0.1.0.0.0.0..0.0.0.1.0.0.0.0.0.0..0.0.0.0.1.0.0.0.0.0
		
Showing 1-7 of 7 results.