cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A193986 T(n,k) is the number of ways to arrange k nonattacking triangular rooks on an nXnXn triangular grid.

Original entry on oeis.org

1, 0, 3, 0, 0, 6, 0, 0, 3, 10, 0, 0, 0, 15, 15, 0, 0, 0, 2, 45, 21, 0, 0, 0, 0, 23, 105, 28, 0, 0, 0, 0, 0, 127, 210, 36, 0, 0, 0, 0, 0, 18, 468, 378, 45, 0, 0, 0, 0, 0, 0, 233, 1352, 630, 55, 0, 0, 0, 0, 0, 0, 6, 1449, 3310, 990, 66, 0, 0, 0, 0, 0, 0, 0, 270, 6213, 7190, 1485, 78, 0, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin, Aug 10 2011

Keywords

Comments

Empirical: minimum-n nonzero T(n,k) is at n=k+floor(k/2) and this T(k+floor(k/2),k) is A002047((k-1)/2) for k odd
Table starts
...1....0......0.......0........0........0.........0.........0........0.......0
...3....0......0.......0........0........0.........0.........0........0.......0
...6....3......0.......0........0........0.........0.........0........0.......0
..10...15......2.......0........0........0.........0.........0........0.......0
..15...45.....23.......0........0........0.........0.........0........0.......0
..21..105....127......18........0........0.........0.........0........0.......0
..28..210....468.....233........6........0.........0.........0........0.......0
..36..378...1352....1449......270........0.........0.........0........0.......0
..45..630...3310....6213.....3195......166.........0.........0........0.......0
..55..990...7190...20993....21273.....4902........28.........0........0.......0
..66.1485..14260...59943...101484....54771......4842.........0........0.......0
..78.2145..26330..150903...386052...382439....104448......2532........0.......0
..91.3003..45885..344323..1243899..1976455...1127473....140598......244.......0
.105.4095..76237..726033..3527469..8250687...8147469...2568288...120052.......0
.120.5460.121688.1434678..9035376.29309540..44813100..27060693..4373740...49620
.136.7140.187712.2685046.21297492.91705972.201616740.200826477.71690568.5227020

Examples

			Some solutions for n=5 k=3
......0..........0..........0..........0..........1..........0..........0
.....0.0........0.0........0.0........0.1........0.0........0.0........0.1
....0.1.0......0.0.1......1.0.0......0.0.0......0.0.0......1.0.0......1.0.0
...0.0.0.1....1.0.0.0....0.0.1.0....0.0.1.0....0.1.0.0....0.0.1.0....0.0.1.0
..0.0.1.0.0..0.0.0.1.0..0.1.0.0.0..1.0.0.0.0..0.0.0.1.0..0.0.0.0.1..0.0.0.0.0
		

Crossrefs

Row sums plus 1 give A289709.
Column 1 is A000217.
Column 2 is A050534.

A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 4, 2, 1, 1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1, 1, 4, 22, 87, 244, 526, 870, 1110, 1110, 870, 526, 244, 87, 22, 4, 1, 1, 5, 41, 238, 1029, 3450, 9147, 19524, 34104, 49231, 59038, 59038, 49231, 34104, 19524, 9147, 3450, 1029, 238
Offset: 0

Views

Author

Heinrich Ludwig, Nov 14 2013

Keywords

Comments

Number of orbits under dihedral group D_6 of order 6. - N. J. A. Sloane, Sep 12 2019

Examples

			Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
  1,  1;
  1,  1,  1,  1;
  1,  2,  4,  6,  4,  2,  1;
  1,  3, 10, 25, 41, 48, 41, 25, 10,  3,  1;
  ...
There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
      X       .       .       X
     . .     X X     . .     X .
    . X .   . . .   X . X   . . .
		

Crossrefs

A326611 Number of arrangements of rooks with rotational symmetry on a triangular grid with n grid points on each side and no two rooks on the same row, column or diagonal.

Original entry on oeis.org

2, 1, 1, 4, 3, 5, 10, 9, 15, 40, 41, 65, 162, 189, 321, 780, 919, 1681, 4034, 5281, 9259, 23936, 30665, 57601, 143602, 199577, 367561, 959236, 1323243, 2585133, 6580650, 9609145, 18433799, 49030248, 71211721, 142636377, 371147842, 566921925, 1122881889, 3024341084, 4583822647, 9446124313
Offset: 1

Views

Author

Andrew Howroyd, Sep 12 2019

Keywords

Examples

			The four cases for n = 4 are:
         o               o               o               o
       o   o           o   o           X   o           o   X
     o   o   o       o   X   o       o   o   X       X   o   o
   o   o   o   o   o   o   o   o   o   X   o   o   o   o   X   o
		

Crossrefs

Programs

  • Python
    def solve(cli):
        count = 1
        for k in range(len(cli)):
            x,y,z = cli[k]
            clo = []
            for c in cli[k+1:]:
                if (not x in c) and (not y in c) and (not z in c):
                    clo.append(c)
            count += 2*solve(clo)
        return count
    def A326611(n):
        c0 = []
        for x in range(n):
            for y in range(x+1,n):
                z = n-1-x-y
                if z>y: c0.append((x,y,z))
        count = solve(c0)
        if n%3 == 1:
            c1 = [c for c in c0 if not n//3 in c]
            count += solve(c1)
        return count
    # Bert Dobbelaere, May 14 2021

Extensions

More terms from Bert Dobbelaere, May 14 2021

A283117 Number of nonequivalent ways (mod D_3) to place rooks on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.

Original entry on oeis.org

2, 2, 4, 8, 19, 51, 169, 592, 2281, 9268, 39521, 175875, 813780, 3903533, 19367571, 99208196, 523695465, 2844708347, 15877906262, 90955375095, 534101204061
Offset: 1

Views

Author

R. J. Mathar, Jul 07 2017

Keywords

Crossrefs

Row sums of A283113.

Formula

a(n) = Sum_{k=0..A004396(n)} A283113(n,k).
a(n) = (A289709(n) + 2*A326611(n) + 3*2^ceiling(n/2))/6. - Andrew Howroyd, Sep 12 2019

Extensions

Name changed by Andrew Howroyd, Sep 12 2019

A289883 Number of maximal independent vertex sets in the n-triangular honeycomb queen graph.

Original entry on oeis.org

1, 3, 3, 11, 23, 73, 211, 651, 2371, 7401, 30151, 107713, 456409, 1888753, 8148451, 37754791, 170459451, 842310755, 4096595827, 20984546901
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Extensions

a(14)-a(20) from Andrew Howroyd, Dec 03 2021

A289708 Number of matchings in the n-triangular honeycomb queen graph.

Original entry on oeis.org

1, 4, 51, 2468, 516950, 514413280, 2620954569792
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Cf. A011848 (matching number), A289878, A289884, A289709.

Extensions

Name corrected by Andrew Howroyd, Jul 17 2017
Showing 1-6 of 6 results.