cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194454 a(n) = 12*n^2 + 2*n + 1.

Original entry on oeis.org

1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, 1475, 1753, 2055, 2381, 2731, 3105, 3503, 3925, 4371, 4841, 5335, 5853, 6395, 6961, 7551, 8165, 8803, 9465, 10151, 10861, 11595, 12353, 13135, 13941, 14771, 15625, 16503, 17405, 18331, 19281
Offset: 0

Views

Author

Bruno Berselli, Aug 24 2011

Keywords

Comments

A142241 gives the first differences.
Inverse binomial transform of this sequence: 1, 14, 24, 0, 0 (0 continued).
a(n)*a(n-1)-11 is a square, precisely 4*A051866(n)^2.
Sequence found by reading the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			Using these numbers we can write:
  1, 15, 53, 115, 201, 311, 445,  603,  785,  991, 1221, ...
  0,  0,  1,  15,  53, 115, 201,  311,  445,  603,  785, ...
  0,  0,  0,   0,   1,  15,  53,  115,  201,  311,  445, ...
  0,  0,  0,   0,   0,   0,   1,   15,   53,  115,  201, ...
  0,  0,  0,   0,   0,   0,   0,    0,    1,   15,   53, ...
  0,  0,  0,   0,   0,   0,   0,    0,    0,    0,    1, ...
  ======================================================
  The sums of the columns give the sequence A172073 (after 0):
  1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, ...
		

Crossrefs

Programs

  • Magma
    [12*n^2+2*n+1: n in [0..40]];
    
  • Mathematica
    Table[12 n^2 + 2 n + 1, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
  • PARI
    for(n=0, 40, print1(12*n^2+2*n+1", "));

Formula

G.f.: (1+x)*(1+11*x)/(1-x)^3.
a(n) = A154106(-n-1).
a(n) = 2*A049453(n) + 1.
a(n) = A051866(n) + A051866(n+1). - Charlie Marion, Nov 15 2019
E.g.f.: exp(x)*(1 + 14*x + 12*x^2). - Stefano Spezia, Nov 15 2019