A194454 a(n) = 12*n^2 + 2*n + 1.
1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, 1475, 1753, 2055, 2381, 2731, 3105, 3503, 3925, 4371, 4841, 5335, 5853, 6395, 6961, 7551, 8165, 8803, 9465, 10151, 10861, 11595, 12353, 13135, 13941, 14771, 15625, 16503, 17405, 18331, 19281
Offset: 0
Examples
Using these numbers we can write: 1, 15, 53, 115, 201, 311, 445, 603, 785, 991, 1221, ... 0, 0, 1, 15, 53, 115, 201, 311, 445, 603, 785, ... 0, 0, 0, 0, 1, 15, 53, 115, 201, 311, 445, ... 0, 0, 0, 0, 0, 0, 1, 15, 53, 115, 201, ... 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 53, ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ... ====================================================== The sums of the columns give the sequence A172073 (after 0): 1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, ...
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[12*n^2+2*n+1: n in [0..40]];
-
Mathematica
Table[12 n^2 + 2 n + 1, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
-
PARI
for(n=0, 40, print1(12*n^2+2*n+1", "));
Formula
G.f.: (1+x)*(1+11*x)/(1-x)^3.
a(n) = A154106(-n-1).
a(n) = 2*A049453(n) + 1.
E.g.f.: exp(x)*(1 + 14*x + 12*x^2). - Stefano Spezia, Nov 15 2019
Comments