cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049453 Second pentagonal numbers with even index: a(n) = n*(6*n+1).

Original entry on oeis.org

0, 7, 26, 57, 100, 155, 222, 301, 392, 495, 610, 737, 876, 1027, 1190, 1365, 1552, 1751, 1962, 2185, 2420, 2667, 2926, 3197, 3480, 3775, 4082, 4401, 4732, 5075, 5430, 5797, 6176, 6567, 6970, 7385, 7812, 8251, 8702, 9165, 9640, 10127, 10626, 11137, 11660, 12195
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Number of edges in the join of the complete tripartite graph of order 3n and the cycle graph of order n, K_n,n,n * C_n. - Roberto E. Martinez II, Jan 07 2002
Sequence found by reading the line (one of the diagonal axes) from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
First bisection of A036498. - Bruno Berselli, Nov 25 2012

Crossrefs

Programs

Formula

G.f.: x*(7+5*x)/(1-x)^3.
a(n) = 12*n + a(n-1) - 5 with n > 0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Jun 07 2017
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - sqrt(3)*Pi/2 - 2*log(2) - 3*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi + log(2) + sqrt(3)*log(2 + sqrt(3)) - 6. (End)
E.g.f.: exp(x)*x*(7 + 6*x). - Elmo R. Oliveira, Dec 12 2024

A172073 a(n) = (4*n^3 + n^2 - 3*n)/2.

Original entry on oeis.org

0, 1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, 3510, 4459, 5565, 6840, 8296, 9945, 11799, 13870, 16170, 18711, 21505, 24564, 27900, 31525, 35451, 39690, 44254, 49155, 54405, 60016, 66000, 72369, 79135, 86310, 93906, 101935, 110409, 119340, 128740
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2010

Keywords

Comments

14-gonal (or tetradecagonal) pyramidal numbers generated by the formula n*(n+1)*(2*d*n-(2*d-3))/6 for d=6.
In fact, the sequence is related to A000567 by a(n) = n*A000567(n) - Sum_{i=0..n-1} A000567(i) and this is the case d=6 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Nov 29 2010
Except for the initial 0, this is the principal diagonal of the convolution array A213761. - Clark Kimberling, Jul 04 2012
Starting (1, 15, 54, ...), this is the binomial transform of (1, 14, 25, 12, 0, 0, 0, ...). - Gary W. Adamson, Jul 29 2015

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(4*n-3)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [(4*n^3+n^2-3*n)/2: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
    
  • Maple
    seq(n*(n+1)*(4*n-3)/2, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    f[n_]:= n(n+1)(4n-3)/2; Array[f, 40, 0]
    LinearRecurrence[{4,-6,4,-1},{0,1,15,54},40] (* Harvey P. Dale, Jan 29 2013 *)
    CoefficientList[Series[x (1+11x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
  • PARI
    a(n)=(4*n^3+n^2-3*n)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [n*(n+1)*(4*n-3)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = n*(n+1)*(4*n-3)/2.
From Bruno Berselli, Dec 15 2010: (Start)
G.f.: x*(1+11*x)/(1-x)^4.
a(n) = Sum_{i=0..n} A051866(i). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=15, a(3)=54. - Harvey P. Dale, Jan 29 2013
a(n) = Sum_{i=0..n-1} (n-i)*(12*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi/21 + 8*log(2)/7 - 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(2)*Pi/21 + 8*sqrt(2)*log(sqrt(2)+2)/21 - (20 + 4*sqrt(2))*log(2)/21 + 2/7. (End)
E.g.f.: exp(x)*x*(2 + 13*x + 4*x^2)/2. - Elmo R. Oliveira, Aug 04 2025

Extensions

Edited by Bruno Berselli, Dec 14 2010

A154106 a(n) = 12*n^2 + 22*n + 11.

Original entry on oeis.org

11, 45, 103, 185, 291, 421, 575, 753, 955, 1181, 1431, 1705, 2003, 2325, 2671, 3041, 3435, 3853, 4295, 4761, 5251, 5765, 6303, 6865, 7451, 8061, 8695, 9353, 10035, 10741, 11471, 12225, 13003, 13805, 14631, 15481, 16355, 17253, 18175, 19121
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

Sequence found by reading the line from 11, in the direction 11, 45,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			a(3) = 12*3^2 + 22*3 + 11 = 185 = 2*3*29 + 11 = 2*3*A016969(4) + 11.
a(4) = a(3) +24*4 +10 = 185 +96 +10 = 291.
		

Crossrefs

Programs

  • Magma
    [ 12*n^2+22*n+11: n in [0..39] ];
    
  • Mathematica
    Table[12n^2+22n+11,{n,0,50}]  (* Harvey P. Dale, Mar 16 2011 *)
    LinearRecurrence[{3,-3,1},{11,45,103}, 25] (* G. C. Greubel, Sep 02 2016 *)
  • PARI
    a(n)=12*n^2+22*n+11 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: (1 +x)*(11 +x)/(1-x)^3.
a(n) = 2*n*A016969(n+1) + 11.
a(0) = 11; for n > 0, a(n) = a(n-1) + 24*n + 10.
a(n) = 2 + A185918(n+1). - Omar E. Pol, Jul 18 2012
E.g.f.: (11 + 34*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016
Showing 1-3 of 3 results.