A195284 Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A195434 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).
6, 4, 8, 7, 8, 2, 1, 3, 4, 1, 2, 6, 1, 6, 1, 2, 8, 5, 3, 8, 8, 8, 0, 3, 0, 3, 8, 0, 7, 6, 6, 9, 3, 5, 6, 0, 6, 1, 9, 4, 0, 3, 5, 5, 7, 0, 5, 8, 6, 7, 9, 5, 2, 3, 3, 9, 6, 4, 1, 2, 8, 3, 6, 3, 6, 8, 3, 3, 2, 9, 8, 5, 3, 3, 9, 6, 2, 2, 6, 7, 3, 0, 3, 5, 9, 1, 4, 7, 7, 3, 5, 6, 8, 8, 4, 0, 8, 0, 4, 7
Offset: 0
Comments
See A195304 for definitions and a general discussion.
Examples
(A)=0.648782134126161285388803038076693560619403...
Programs
-
Mathematica
a = 1; b = 2; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195434 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195435 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195444 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195445 *)
-
PARI
sqrt(subst((45*t^4 - 126*t^3 + 125*t^2 - 52*t + 8)/(9*t^2 - 12*t + 4), t, polrootsreal(270*x^4 - 738*x^3 + 756*x^2 - 344*x + 56)[1])) \\ Charles R Greathouse IV, Feb 11 2025
-
PARI
polrootsreal(3645*x^6 + 11421*x^4 + 6219*x^2 - 4913)[2] \\ Charles R Greathouse IV, Feb 11 2025
A195435 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).
1, 3, 8, 7, 3, 1, 2, 7, 2, 8, 3, 1, 3, 8, 2, 0, 9, 1, 7, 4, 6, 3, 3, 6, 0, 2, 4, 0, 9, 8, 2, 2, 3, 3, 2, 1, 2, 5, 9, 6, 4, 4, 1, 8, 6, 2, 5, 1, 6, 9, 7, 6, 7, 6, 7, 4, 7, 6, 5, 4, 1, 2, 8, 4, 2, 3, 5, 6, 2, 8, 3, 4, 5, 5, 0, 0, 9, 7, 1, 9, 7, 9, 4, 1, 5, 3, 7, 9, 6, 0, 7, 3, 5, 5, 9, 4, 5, 3, 7, 4
Offset: 1
Comments
See A195304 for definitions and a general discussion.
Examples
(B)=1.387312728313820917463360240982233212...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 1; b = 2; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195434 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195435 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195444 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195445 *)
-
PARI
sqrt(subst((9*t^4 - 30*t^3 + 41*t^2 - 28*t + 8)/(9*t^2 - 12*t + 4), t, polrootsreal(27*t^3 - 54*t^2 + 36*t - 4)[1])) \\ Charles R Greathouse IV, Feb 11 2025
-
PARI
polrootsreal(729*x^6 - 1215*x^4 - 297*x^2 - 125)[2] \\ Charles R Greathouse IV, Feb 11 2025
A195412 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
3, 2, 6, 8, 5, 0, 5, 3, 9, 8, 0, 7, 1, 2, 0, 6, 3, 7, 7, 1, 0, 0, 2, 1, 3, 3, 3, 6, 8, 5, 3, 8, 6, 5, 8, 9, 3, 3, 0, 4, 0, 5, 7, 8, 5, 6, 4, 9, 3, 4, 6, 0, 1, 3, 3, 6, 0, 9, 8, 0, 3, 4, 6, 4, 6, 2, 9, 0, 5, 1, 3, 6, 7, 8, 6, 1, 7, 0, 4, 5, 2, 8, 9, 0, 5, 2, 8, 9, 7, 5, 7, 9, 2, 6, 9, 2, 9, 9, 2, 7
Offset: 1
Comments
See A195304 for definitions and a general discussion.
Examples
(A)=3.268505398071206377100213336853865893304057...
Programs
-
Mathematica
a = 5; b = 12; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195412 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195413 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195414 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *)
A195413 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
7, 7, 7, 7, 7, 3, 1, 7, 7, 7, 5, 1, 2, 1, 1, 5, 6, 6, 8, 6, 8, 4, 0, 3, 3, 8, 9, 2, 2, 1, 5, 4, 7, 4, 5, 8, 6, 3, 0, 2, 5, 5, 4, 4, 9, 2, 3, 1, 4, 4, 4, 0, 4, 7, 4, 0, 9, 4, 4, 8, 6, 0, 5, 7, 1, 5, 7, 9, 1, 1, 4, 8, 5, 8, 4, 2, 2, 6, 3, 9, 6, 6, 9, 8, 1, 4, 7, 1, 6, 1, 7, 5, 0, 7, 0, 6, 0, 5, 6, 5
Offset: 1
Comments
See A195304 for definitions and a general discussion.
Examples
(B)=7.77773177751211566868403389221547...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 5; b = 12; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195412 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195413 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195414 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *)
A195414 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
6, 4, 9, 5, 1, 6, 0, 5, 0, 2, 9, 2, 0, 9, 4, 5, 3, 2, 4, 4, 9, 9, 3, 9, 5, 2, 6, 3, 7, 4, 2, 5, 2, 4, 7, 5, 8, 1, 4, 1, 8, 7, 5, 7, 5, 9, 9, 5, 3, 5, 1, 0, 7, 5, 6, 6, 3, 8, 3, 8, 5, 2, 2, 9, 2, 8, 8, 4, 5, 4, 9, 7, 1, 6, 2, 6, 9, 8, 8, 7, 3, 3, 6, 7, 7, 6, 6, 2, 9, 4, 8, 0, 8, 7, 6, 3, 4, 5, 0, 6
Offset: 1
Comments
See A195304 for definitions and a general discussion.
Examples
(C)=6.49516050292094532449939526374252475814...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 5; b = 12; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195412 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195413 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195414 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *)
A195424 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 5,12,13 right triangle ABC.
5, 8, 4, 7, 1, 3, 2, 5, 5, 9, 5, 0, 1, 4, 2, 2, 4, 5, 6, 7, 6, 1, 2, 1, 4, 1, 6, 4, 2, 7, 0, 6, 2, 1, 7, 4, 5, 9, 1, 6, 1, 6, 2, 7, 0, 2, 9, 2, 0, 4, 7, 0, 4, 5, 4, 7, 8, 0, 8, 9, 1, 5, 8, 3, 6, 9, 1, 8, 0, 5, 9, 4, 1, 7, 7, 6, 9, 8, 5, 7, 4, 3, 1, 8, 8, 1, 4, 1, 4, 4, 1, 1, 7, 3, 8, 7, 4, 9, 9, 9
Offset: 0
Comments
See A195304 for definitions and a general discussion.
Examples
Philo(ABC,G)=0.584713255950142245676121416427062174591616270...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 5; b = 12; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195412 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195413 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195414 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *)
A195425 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(7,24,25).
4, 6, 1, 9, 7, 4, 5, 4, 3, 9, 8, 3, 9, 2, 0, 2, 0, 4, 1, 2, 3, 3, 4, 1, 3, 5, 5, 1, 1, 2, 8, 8, 7, 5, 1, 3, 2, 9, 8, 3, 3, 3, 9, 2, 9, 7, 2, 3, 9, 9, 1, 7, 2, 4, 3, 7, 1, 4, 5, 8, 3, 1, 5, 5, 8, 0, 6, 0, 9, 4, 1, 2, 3, 1, 3, 1, 7, 1, 1, 6, 7, 7, 8, 1, 2, 3, 0, 2, 3, 2, 0, 7, 4, 5, 6, 0, 8, 8, 1, 2
Offset: 1
Comments
See A195304 for definitions and a general discussion.
Examples
(A)=4.6197454398392020412334135511288...
Programs
-
Mathematica
a = 7; b = 24; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195425 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195426 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195427 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195428 *)
A195426 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(7,24,25).
1, 3, 8, 2, 1, 1, 5, 8, 6, 0, 2, 8, 3, 0, 9, 9, 8, 8, 2, 6, 2, 0, 7, 5, 3, 9, 9, 1, 3, 0, 7, 2, 8, 0, 2, 7, 9, 6, 5, 1, 8, 4, 5, 0, 4, 8, 2, 3, 5, 7, 9, 5, 9, 2, 6, 9, 4, 3, 5, 8, 5, 0, 5, 0, 6, 0, 8, 5, 3, 2, 2, 1, 3, 5, 1, 9, 2, 4, 4, 8, 4, 5, 0, 1, 0, 0, 3, 8, 2, 2, 7, 4, 4, 9, 2, 4, 2, 6, 4, 6
Offset: 2
Comments
See A195304 for definitions and a general discussion.
Examples
(B)=13.821158602830998826207539913072802796518450...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 7; b = 24; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195425 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195426 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195427 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195428 *)
A195427 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(7,24,25).
1, 2, 2, 2, 2, 4, 4, 4, 2, 3, 2, 2, 5, 9, 6, 9, 8, 0, 5, 1, 3, 3, 2, 5, 9, 6, 3, 6, 3, 2, 5, 9, 7, 9, 7, 9, 3, 1, 2, 0, 8, 2, 0, 5, 9, 2, 3, 8, 6, 3, 6, 7, 9, 5, 7, 6, 4, 6, 8, 9, 2, 4, 2, 6, 6, 4, 9, 6, 6, 3, 4, 6, 2, 0, 7, 7, 2, 0, 8, 7, 9, 0, 4, 1, 4, 8, 0, 4, 8, 3, 2, 3, 8, 8, 1, 7, 7, 6, 2, 1
Offset: 2
Comments
See A195304 for definitions and a general discussion.
Examples
(C)=12.22244423225969805133259636325979793120...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 7; b = 24; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195425 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195426 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195427 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195428 *)
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions