A195319 Three times second hexagonal numbers: 3*n*(2*n+1).
0, 9, 30, 63, 108, 165, 234, 315, 408, 513, 630, 759, 900, 1053, 1218, 1395, 1584, 1785, 1998, 2223, 2460, 2709, 2970, 3243, 3528, 3825, 4134, 4455, 4788, 5133, 5490, 5859, 6240, 6633, 7038, 7455, 7884, 8325, 8778, 9243, 9720, 10209, 10710, 11223
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Hans G. Oberlack, Triangle spiral.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..30], n -> 3*n*(2*n+1)); # G. C. Greubel, Dec 07 2018
-
Magma
[3*n*(2*n+1): n in [0..50]]; // Vincenzo Librandi, Sep 20 2011
-
Maple
A195319:=n->6*n^2 + 3*n: seq(A195319(n), n=0..50); # Wesley Ivan Hurt, Nov 27 2015
-
Mathematica
Table[6n^2+3n,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,9,30},50] (* Harvey P. Dale, Oct 13 2013 *) CoefficientList[Series[3 x (3 + x)/(1 - x)^3, {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 27 2015 *)
-
PARI
a(n)=3*n*(2*n+1) \\ Charles R Greathouse IV, Oct 16 2015
-
Sage
[3*n*(2*n+1) for n in range(50)] # G. C. Greubel, Dec 07 2018
Formula
a(n) = 6*n^2 + 3*n = 3*A014105(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Oct 13 2013
G.f.: 3*x*(3+x) / (1-x)^3. - Wesley Ivan Hurt, Nov 27 2015
E.g.f.: 3*x*(2*x+3)*exp(x). - G. C. Greubel, Dec 07 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(1 - log(2))/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/2 + log(2) - 2)/3. (End)
Comments