cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A202804 a(n) = n*(6*n+4).

Original entry on oeis.org

0, 10, 32, 66, 112, 170, 240, 322, 416, 522, 640, 770, 912, 1066, 1232, 1410, 1600, 1802, 2016, 2242, 2480, 2730, 2992, 3266, 3552, 3850, 4160, 4482, 4816, 5162, 5520, 5890, 6272, 6666, 7072, 7490, 7920, 8362, 8816, 9282, 9760, 10250, 10752, 11266, 11792, 12330
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022

Crossrefs

Programs

  • Maple
    A202804:=n->n*(6*n+4): seq(A202804(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[n(6n+4),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,10,32},50] (* Harvey P. Dale, Dec 28 2015 *)
  • PARI
    x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
a(n) = A003154(n+1) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A281381 a(n) = n*(n + 1)*(4*n + 5)/2.

Original entry on oeis.org

0, 9, 39, 102, 210, 375, 609, 924, 1332, 1845, 2475, 3234, 4134, 5187, 6405, 7800, 9384, 11169, 13167, 15390, 17850, 20559, 23529, 26772, 30300, 34125, 38259, 42714, 47502, 52635, 58125, 63984, 70224, 76857, 83895, 91350, 99234, 107559, 116337, 125580, 135300, 145509, 156219, 167442, 179190, 191475
Offset: 0

Views

Author

Peter M. Chema, Jan 21 2017

Keywords

Comments

Shares its digital root, zero together with period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9] with A027480.
Final digits cycle a length period 20: repeat [0, 9, 9, 2, 0, 5, 9, 4, 2, 5, 5, 4, 4, 7, 5, 0, 4, 9, 7, 0].

Crossrefs

Partial sums of A195319.

Programs

  • Magma
    [n*(n+1)*(4*n+5)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 30 2022
  • Mathematica
    Table[n (n + 1) (4 n + 5)/2, {n, 0, 45}] (* or *)
    CoefficientList[Series[3 x (3 + x)/(1 - x)^4, {x, 0, 45}], x] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    concat(0, Vec(3*x*(3 + x) / (1 - x)^4 + O(x^50))) \\ Colin Barker, Jan 21 2017
    
  • PARI
    a(n) = n*(n + 1)*(4*n + 5)/2 \\ Charles R Greathouse IV, Feb 01 2017
    

Formula

a(n) = 2*n^3 + 9*n^2/2 + 5*n/2.
a(n) = 3*A016061(n).
a(n) = A006002(n+1)*(n) - A006002(n)*(n-1).
a(n) = A007742(n)*(n - 1)/2.
From Colin Barker, Jan 21 2017: (Start)
G.f.: 3*x*(3 + x) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
From Stefano Spezia, Aug 30 2022: (Start)
E.g.f.: exp(x)*x*(18 + 21*x + 4*x^2)/2.
Sum_{n>0} 1/a(n) = 2*(20*log(8) + 10*Pi - 71)/25 = 0.1603805895595720759728288896228498341201... . (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*sqrt(2)*Pi/5 + 4*(3+sqrt(2))*log(2)/5 - 8*sqrt(2)*log(2-sqrt(2))/5 - 178/25. - Amiram Eldar, Sep 22 2022
Showing 1-4 of 4 results.