cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080192 Complement of A080191 relative to A000040. Prime p is a term iff there is no prime between 2*p and 2*q, where q is the next prime after p.

Original entry on oeis.org

59, 71, 101, 107, 149, 263, 311, 347, 461, 499, 521, 569, 673, 757, 821, 823, 857, 881, 883, 907, 967, 977, 1009, 1061, 1091, 1093, 1151, 1213, 1279, 1283, 1297, 1301, 1319, 1433, 1487, 1489, 1493, 1549, 1571, 1597, 1619, 1667, 1697, 1721, 1787, 1871, 1873
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

From Peter Munn, Oct 19 2017: (Start)
This is also a list of the leaf node labels in the tree of primes described in A290183.
For k > 0, the earliest run of k adjacent primes in this sequence starts with the least prime greater than A215238(k+1)/2. Thus we see that A215238(3) = 1637 corresponds to 821 followed by 823 being the first run of 2 adjacent primes in this sequence.
(End)
From Peter Munn, Nov 02 2017: (Start)
If p is in A005384 (a Sophie Germain prime), 2p+1 is therefore a prime, so p cannot be in this sequence. Similarly, any prime p in A023204 has a corresponding prime 2p+3, which (if p>2) likewise implies its absence (and if p=2 it is in A005384).
If p is the lesser of twin primes it is in this sequence if it is neither Sophie Germain nor in A023204.
Conjecture: a(n)/A000040(n) is asymptotic to 3. Reason: I expect the distribution of terms in A102820 to converge to a geometric distribution with mean value 2.
(End)

Examples

			59 is a term since 113 is the prime preceding 2*59, 127 is the next prime and 61 is the largest of all prime factors of 114, ..., 122 = 2*61, ..., 126.
		

Crossrefs

A080191 is the complement of this sequence relative to A000040.
Sequences with related analysis: A005384, A023204, A052248, A102820, A215238, A290183.
Sequences with similar definitions: A195270, A195271, A195325, A195377.

Programs

  • Mathematica
    Select[Prime[Range[300]],NextPrime[2#]>2NextPrime[#]&] (* Harvey P. Dale, Jul 07 2011 *)
  • NARS2000
    ¯1↓b/⍨(1⌽a)<1πa←2×b←¯2π⍳1E4 ⍝ Michael Turniansky, Dec 29 2020
  • PARI
    {forprime(k=2,1873,p=precprime(2*k); q=nextprime(p+1); m=0; for(j=p+1,q-1,f=factor(j); a=f[matsize(f)[1],1]; if(m
    				
  • PARI
    isok(p) = isprime(p) && (primepi(2*p) == primepi(2*nextprime(p+1)));
    forprime(p=2, 2000, if (isok(p), print1(p, ", "))) \\ Michel Marcus, Sep 22 2017
    
  • PARI
    first(n) = my(res = vector(n), i = 0); {n==0&&return([]); forprime(p = 2, , if(nextprime(2*p) > 2*nextprime(p + 1), i++; res[i] = p; if(i == n, return(res))))} \\ David A. Corneth, Oct 25 2017
    

Formula

For all k, prime(k) = A000040(k) is a term if and only if A102820(k) = 0. - Peter Munn, Oct 24 2017

A218769 Let (p,p+2) be the n-th twin prime pair. a(n) is the least integer r > 1 for which the interval (r*p, r*(p+2)) contains no primes, or a(n)=0, if no such r exists.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 2, 2, 2, 2, 3, 2, 5, 5, 4, 5, 4, 4, 3, 2, 2, 4, 4, 2, 2, 2, 6, 3, 3, 4, 3, 2, 3, 2, 2, 7, 3, 3, 2, 2, 2, 6, 0, 3, 2, 2, 5, 5, 23, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2
Offset: 1

Views

Author

Keywords

Comments

For n<=20000, the largest a(n) is a(49)=23. a(n)=0 for n = 1, 2, 3, 4, 6, 43, 37890, 606457, ... corresponding to the twin primes (p, p+2) with p=3, 5, 11, 17, 41, 1277, 5995727, 143556431, ....

Examples

			The 13th twin prime pair is {179, 181}. For r = 2 the range {358, ..., 362} contains prime 359; for r = 3, the range {537, ..., 543} contains prime 541; for r = 4, the range {716, ..., 724} contains prime 719. But for r = 5, the range {895, ..., 905} does not contain any prime. Thus a(13) = 5.
		

Crossrefs

Programs

  • Mathematica
    rmax = 100; p1[1] = 3; p1[n_] := p1[n] = (p = NextPrime[p1[n-1]]; While[ !PrimeQ[p+2], p = NextPrime[p]]; p); a[n_] := Catch[ For[r = 2, r <= rmax, r++, If[ PrimePi[r*p1[n]] == PrimePi[r*(p1[n] + 2)], Throw[r], If[r == rmax, Throw[0]]]]]; Table[ a[n] , {n, 1, 65}] (* Jean-François Alcover, Dec 13 2012 *)

Extensions

Typo in definition corrected by Jonathan Sondow, Dec 21 2012

A195379 3.5-gap primes: Primes prime(k) such that there is no prime between 7*prime(k)/2 and 7*prime(k+1)/2.

Original entry on oeis.org

2, 137, 281, 521, 641, 883, 937, 1087, 1151, 1229, 1277, 1301, 1489, 1567, 1607, 1697, 2027, 2081, 2237, 2381, 2543, 2591, 2657, 2687, 2729, 2801, 2851, 2969, 3119, 3257, 3301, 3359, 3463, 3467, 3529, 3673, 3733, 3793, 3821, 3851, 4073, 4217, 4229, 4241, 4259, 4283, 4337, 4421, 4481
Offset: 1

Views

Author

Vladimir Shevelev, Sep 17 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimePi[7*NextPrime[#]/2] == PrimePi[7*#/2] &] (* T. D. Noe, Sep 20 2011 *)

Extensions

Corrected by R. J. Mathar, Sep 20 2011

A218561 4-gap primes: Prime p is a term iff there is no prime between 4*p and 4*nextprime(p), where nextprime=A151800.

Original entry on oeis.org

29, 71, 137, 197, 239, 269, 347, 419, 431, 641, 659, 809, 821, 1061, 1091, 1151, 1289, 1489, 1607, 1721, 1783, 1877, 1949, 1993, 2083, 2141, 2267, 2339, 2381, 2389, 2549, 2729, 2801, 2833, 2969, 2999, 3019, 3041, 3217, 3253, 3299, 3329, 3389, 3461
Offset: 1

Views

Author

Keywords

Examples

			29 is in the sequence since there are no primes in the interval(4*29,4*31)=(116,124)
		

Crossrefs

Programs

Showing 1-4 of 4 results.