cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A014489 Positions of involutions (permutations whose square is the identity) in reverse colexicographic order (A055089/A195663).

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 14, 16, 21, 23, 24, 25, 26, 29, 54, 55, 60, 67, 80, 82, 86, 94, 105, 107, 111, 119, 120, 121, 122, 125, 126, 127, 134, 136, 141, 143, 264, 265, 266, 269, 288, 289, 314, 316, 339, 341, 390, 391, 396, 403, 414, 415, 444, 450, 469
Offset: 0

Views

Author

Keywords

Crossrefs

Positions of zeros in A261099.
From a(1)=1 onward also positions of 2's in A055092.
Subsequences: A060112, A064640.
Cf. also A261220.

Programs

  • Maple
    N:= 100: # to get a(0) to a(N)
    M:= 0: A[0]:= 0: count:= 0:
    for m from 2 while count < N do
      P:= remove(t -> t[1]=1, combinat:-permute(m));
      P:= map(t -> ListTools:-Reverse(subs([seq(i=m+1-i,i=1..m)],t)),P);
      R:= select(t -> max(map(nops,convert(P[t],disjcyc))) = 2, [$1..nops(P)]);
      for r in R do
         count:= count+1;
         A[count]:= r+M;
         if count = N then break fi;
      od:
      M:= M + nops(P);
    od:
    seq(A[i],i=0..count); # Robert Israel, Oct 28 2015

Extensions

Name changed by Antti Karttunen, Aug 30 2015

A055089 List of all finite permutations in reversed colexicographic ordering.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 3, 1, 2, 2, 3, 1, 3, 2, 1, 1, 2, 4, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 2, 4, 1, 3, 4, 2, 1, 3, 1, 3, 4, 2, 3, 1, 4, 2, 1, 4, 3, 2, 4, 1, 3, 2, 3, 4, 1, 2, 4, 3, 1, 2, 2, 3, 4, 1, 3, 2, 4, 1, 2, 4, 3, 1, 4, 2, 3, 1, 3, 4, 2, 1, 4, 3, 2, 1, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 3, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2000

Keywords

Examples

			In this table, each row consists of A001563(n) permutations of n+1 terms; i.e., we have (1/) 2,1/ 1,3,2; 3,1,2; 2,3,1; 3,2,1/ 1,2,4,3; 2,1,4,3; ... .
Append to each an infinite number of fixed terms and we get a list of rearrangements of the natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
Alternatively, if we take only the first n terms of each such infinite row, then the first n! rows give all permutations of the elements 1,2,...,n.
		

Crossrefs

Inversion vectors: A007623, cycle counts: A055090, minimum number of transpositions: A055091, minimum number of adjacent transpositions: A034968, order of each permutation: A055092, number of non-fixed elements: A055093, positions of inverses: A056019, positions after Foata transform: A065181; positions of fixed-point-free involutions: A064640.
Cf. A195663, array of the infinite rows.
This permutation list gives essentially the same information as A030298/A030299, but in a more compact way, by skipping those permutations of A030298 that start with a fixed element.
A220658(n) gives the rank r of the permutation of which the term at a(n) is an element.
A220659(n) gives the zero-based position (from the left) of that a(n) in that permutation of rank r.
A084558(r)+1 gives the size of the finite subsequence (of the r-th infinite, but finitary permutation) which has been included in this list.

Programs

  • Maple
    factorial_base := proc(nn) local n,a,d,j,f; n := nn; if(0 = n) then RETURN([0]); fi; a := []; f := 1; j := 2; while(n > 0) do d := floor(`mod`(n,(j*f))/f); a := [d,op(a)]; n := n - (d*f); f := j*f; j := j+1; od; RETURN(a); end;
    fexlist2permlist := proc(a) local n,b,j; n := nops(a); if(0 = n) then RETURN([1]); fi; b := fexlist2permlist(cdr(a)); for j from 1 to n do if(b[j] >= ((n+1)-a[1])) then b[j] := b[j]+1; fi; od; RETURN([op(b),(n+1)-a[1]]); end;
    fac_base := n -> fac_base_aux(n,2); fac_base_aux := proc(n,i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i),i+1)), (n mod i)]); fi; end;
    PermRevLexUnrank := n -> `if`((0 = n),[1],fexlist2permlist(fac_base(n)));
    cdr := proc(l) if 0 = nops(l) then ([]) else (l[2..nops(l)]); fi; end; # "the tail of the list"
    # Same algorithm in different guise, showing how permutations are composed of adjacent transpositions (compare to algorithm PermUnrank3R at A060117):
    PermRevLexUnrankAMSDaux := proc(n,r, pp) local s,p,k; p := pp; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); for k from n-s to n-1 do p := permul(p,[[k,k+1]]); od; RETURN(PermRevLexUnrankAMSDaux(n-1, r-(s*((n-1)!)), p)); fi; end;
    PermRevLexUnrankAMSD := proc(r) local n; n := nops(factorial_base(r)); convert(PermRevLexUnrankAMSDaux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end;
  • Mathematica
    A055089L[n_] := Reverse@SortBy[DeleteCases[Permutations@Range@n, {, n}], Reverse]; Flatten@Array[A055089L, 4] (* JungHwan Min, Aug 28 2016 *)

Formula

[seq(op(PermRevLexUnrank(j)), j=0..)]; (see Maple code given below).

Extensions

Name changed by Tilman Piesk, Feb 01 2012

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A227148 Numbers k for which the sum of digits is even when k is written in the factorial base (A007623).

Original entry on oeis.org

0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93, 94, 96, 99, 100, 103, 104, 107, 108, 111, 112, 115, 116, 119, 121, 122, 125
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2013

Keywords

Comments

Numbers k for which minimal number of factorials needed to add to get k is even.
This sequence offers one possible analog to A001969 (evil numbers) in factorial base system. A227130 gives another kind of analog.
In each range [0,n!-1] exactly half of the integers are found in this sequence, and the other half of them are found in the complement, A227149.
The sequence gives the positions of even permutations in the tables A055089 and A195663; and equivalently, the positions of even numbers in A055091.

Crossrefs

Complement: A227149. Cf. also A001969, A034968, A227130.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, s += r; m++]; EvenQ[s]]; Select[Range[0, 125], q] (* Amiram Eldar, Jan 24 2024 *)

A261096 A(i,j) = rank (in A055089) of the composition of the i-th and the j-th permutation in table A055089, which lists all finite permutations in reversed colexicographic ordering.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 4, 3, 3, 4, 5, 0, 2, 4, 5, 2, 1, 5, 5, 5, 6, 3, 5, 4, 1, 4, 6, 7, 7, 4, 0, 0, 3, 7, 7, 8, 6, 12, 1, 3, 2, 8, 6, 8, 9, 10, 13, 13, 2, 1, 9, 10, 9, 9, 10, 11, 14, 12, 18, 0, 10, 11, 6, 8, 10, 11, 8, 15, 16, 19, 19, 11, 8, 7, 11, 11, 11, 12, 9, 16, 17, 20, 18, 0, 9, 11, 10, 7, 10, 12, 13, 18, 17, 14, 21, 22, 1, 1, 10, 6, 6, 9, 13, 13, 14, 19, 6, 15, 22, 23, 2, 0, 14, 7, 9, 8, 14, 12, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

The square array A(row>=0, col>=0) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
A(i,j) gives the rank (in ordering used by table A055089) of the permutation which is obtained by composing permutations p and q listed as the i-th and the j-th permutation in irregular table A055089 (note that the identity permutation is the 0th). Here the convention is that "permutations act of the left", thus, if p1 and p2 are permutations, then the product of p1 and p2 (p1 * p2) is defined such that (p1 * p2)(i) = p1(p2(i)) for i=1...
Each row and column is a permutation of A001477, because this is the Cayley table ("multiplication table") of an infinite enumerable group, namely, that subgroup of the infinite symmetric group (S_inf) which consists of permutations moving only finite number of elements.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  4,  5,  2,  3,  7,  6, 10, 11,  8,  9, 18, ...
   2,  3,  0,  1,  5,  4, 12, 13, 14, 15, 16, 17,  6, ...
   3,  2,  5,  4,  0,  1, 13, 12, 16, 17, 14, 15, 19, ...
   4,  5,  1,  0,  3,  2, 18, 19, 20, 21, 22, 23,  7, ...
   5,  4,  3,  2,  1,  0, 19, 18, 22, 23, 20, 21, 13, ...
   6,  7,  8,  9, 10, 11,  0,  1,  2,  3,  4,  5, 14, ...
   7,  6, 10, 11,  8,  9,  1,  0,  4,  5,  2,  3, 20, ...
   8,  9,  6,  7, 11, 10, 14, 15, 12, 13, 17, 16,  0, ...
   9,  8, 11, 10,  6,  7, 15, 14, 17, 16, 12, 13, 21, ...
  10, 11,  7,  6,  9,  8, 20, 21, 18, 19, 23, 22,  1, ...
  11, 10,  9,  8,  7,  6, 21, 20, 23, 22, 18, 19, 15, ...
  12, 13, 14, 15, 16, 17,  2,  3,  0,  1,  5,  4,  8, ...
  ...
For A(1,2) (row=1, column=2, both starting from zero), we take as permutation p the permutation which has rank=1 in the ordering used by A055089, which is a simple transposition (1 2), which we can extend with fixed terms as far as we wish (e.g., like {2,1,3,4,5,...}), and as permutation q we take the permutation which has rank=2 (in the same list), which is {1,3,2}. We compose these from the left, so that the latter one, q, acts first, thus c(i) = p(q(i)), and the result is permutation {2,3,1}, which is listed as the 4th one in A055089, thus A(1,2) = 4.
For A(2,1) we compose those two permutations in opposite order, as d(i) = q(p(i)), which gives permutation {3,1,2} which is listed as the 3rd one in A055089, thus A(2,1) = 3.
		

Crossrefs

Transpose: A261097.
Row 0 & Column 0: A001477 (identity permutation).
Row 1: A261098.
Column 1: A004442.
Main diagonal: A261099.
Cf. tables A055089, A195663.
Cf. also A261216, A261217 (similar arrays, but using different orderings of permutations).
Permutations used in conjugation-formulas: A056019, A060119, A060120, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A056019(A261097(A056019(i),A056019(j))).
A(i,j) = A060119(A261216(A060126(i),A060126(j))).
A(i,j) = A060120(A261217(A060127(i),A060127(j))).

A290095 a(n) = A275725(A060126(n)); prime factorization encodings of cycle-polynomials computed for finite permutations listed in reversed colexicographic ordering.

Original entry on oeis.org

2, 4, 18, 8, 8, 12, 150, 100, 54, 16, 16, 24, 54, 16, 90, 40, 36, 16, 16, 24, 40, 60, 16, 36, 1470, 980, 882, 392, 392, 588, 750, 500, 162, 32, 32, 48, 162, 32, 270, 80, 108, 32, 32, 48, 80, 120, 32, 72, 750, 500, 162, 32, 32, 48, 1050, 700, 378, 112, 112, 168, 450, 200, 162, 32, 32, 72, 200, 300, 32, 48, 108, 32, 162, 32, 270, 80, 108, 32, 378, 112, 630, 280
Offset: 0

Views

Author

Antti Karttunen, Aug 17 2017

Keywords

Comments

In this context "cycle-polynomials" are single-variable polynomials where the coefficients (encoded with the exponents of prime factorization of n) are equal to the lengths of cycles in the permutation listed with index n in table A055089 (A195663). See the examples.

Examples

			Consider the first eight permutations (indices 0-7) listed in A055089:
  1 [Only the first 1-cycle explicitly listed thus a(0) = 2^1 = 2]
  2,1 [One transposition (2-cycle) in beginning, thus a(1) = 2^2 = 4]
  1,3,2 [One fixed element in beginning, then transposition, thus a(2) = 2^1 * 3^2 = 18]
  3,1,2 [One 3-cycle, thus a(3) = 2^3 = 8]
  2,3,1 [One 3-cycle, thus a(4) = 2^3 = 8]
  3,2,1 [One transposition jumping over a fixed element, a(5) = 2^2 * 3^1 = 12]
  1,2,4,3 [Two 1-cycles, then a 2-cycle, thus a(6) = 2^1 * 3^1 * 5^2 = 150].
  2,1,4,3 [Two 2-cycles, not crossed, thus a(7) = 2^2 * 5^2 = 100].
		

Crossrefs

Formula

a(n) = A275725(A060126(n)).
Other identities:
A046523(a(n)) = A290096(n).
A056170(a(n)) = A055090(n).
A046660(a(n)) = A055091(n).
A072411(a(n)) = A055092(n).
A275812(a(n)) = A055093(n).

A227149 Numbers k for which the sum of digits is odd when k is written in the factorial base (A007623).

Original entry on oeis.org

1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 24, 27, 28, 31, 32, 35, 36, 39, 40, 43, 44, 47, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 72, 75, 76, 79, 80, 83, 84, 87, 88, 91, 92, 95, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 120, 123, 124
Offset: 1

Views

Author

Antti Karttunen, Jul 02 2013

Keywords

Comments

Numbers k for which minimal number of factorials needed to add to get k is odd.
This sequence offers one possible analog to A000069 (odious numbers) in factorial base system. A227132 gives another kind of analog.
In each range [0,n!-1] exactly half of the integers are found in this sequence, and the other half of them are found in the complement, A227148.
The sequence gives the positions of odd permutations in the tables A055089 and A195663; and equivalently, the positions of odd numbers in A055091.

Crossrefs

Complement: A227148. Cf. also A000069, A034968, A055091, A227132.
Characteristic function: A374468, see also A262725.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, s += r; m++]; OddQ[s]]; Select[Range[125], q] (* Amiram Eldar, Jan 24 2024 *)

A261099 Main diagonal of A261096.

Original entry on oeis.org

0, 0, 0, 4, 3, 0, 0, 0, 12, 16, 23, 19, 8, 23, 0, 20, 0, 7, 16, 11, 15, 0, 7, 0, 0, 0, 0, 4, 3, 0, 48, 48, 60, 64, 71, 67, 86, 93, 74, 94, 74, 85, 116, 111, 119, 99, 108, 99, 30, 30, 86, 89, 112, 111, 0, 0, 78, 82, 107, 103, 0, 20, 26, 46, 96, 103, 15, 0, 41, 29, 78, 73, 60, 115, 38, 119, 38, 63, 56, 107, 0, 104, 0, 55, 26, 100, 0, 104, 19, 42, 33, 56, 11, 52, 0, 25
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally: main diagonal of A261097.
For permutation p, which has rank n in permutation list A055089 (A195663), a(n) gives the rank of the "square" of that permutation (obtained by composing it with itself as: q(i) = p(p(i))) in the same list. Thus zeros (which mark the identity permutation, with rank 0) occur at positions where the permutations of A055089/A195663 are involutions, listed by A014489.

Crossrefs

Main diagonal of A261096 and A261097.
Cf. A014489 (the positions of zeros).
Cf. also A261219.
Related permutations: A060119, A060126.

Formula

a(n) = A261096(n,n) = A261097(n,n).
By conjugating a similar sequence:
a(n) = A060119(A261219(A060126(n))).

A055090 Number of cycles (excluding fixed points) of the n-th finite permutation in reversed colexicographic ordering (A055089).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2000

Keywords

Comments

Among the first n! entries k appears A136394(n,k) times. - Tilman Piesk, Apr 06 2012

Crossrefs

Cf. A195663, A195664, A055089 (ordered finite permutations).
Cf. A198380 (cycle type of the n-th finite permutation).

Programs

  • Maple
    with(group); seq(nops(convert(PermRevLexUnrank(j),'disjcyc')),j=0..)];
    # Procedure PermRevLexUnrank given in A055089.

Formula

a(n) = A055093(n) - A055091(n).
a(n) = A056170(A290095(n)) = A060128(A060126(n)). - Antti Karttunen, Dec 30 2017

Extensions

Name changed by Tilman Piesk, Apr 06 2012

A261097 Transpose of square array A261096.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 3, 4, 3, 4, 2, 0, 5, 4, 5, 5, 5, 1, 2, 5, 6, 4, 1, 4, 5, 3, 6, 7, 7, 3, 0, 0, 4, 7, 7, 8, 6, 8, 2, 3, 1, 12, 6, 8, 9, 9, 10, 9, 1, 2, 13, 13, 10, 9, 10, 8, 6, 11, 10, 0, 18, 12, 14, 11, 10, 11, 11, 11, 7, 8, 11, 19, 19, 16, 15, 8, 11, 12, 10, 7, 10, 11, 9, 0, 18, 20, 17, 16, 9, 12, 13, 13, 9, 6, 6, 10, 1, 1, 22, 21, 14, 17, 18, 13, 14, 12, 14, 8, 9, 7, 14, 0, 2, 23, 22, 15, 6, 19, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Each row and column is a permutation of A001477. See the comments at A261096.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, 13, ...
   2,  4,  0,  5,  1,  3,  8, 10,  6, 11,  7,  9, 14, ...
   3,  5,  1,  4,  0,  2,  9, 11,  7, 10,  6,  8, 15, ...
   4,  2,  5,  0,  3,  1, 10,  8, 11,  6,  9,  7, 16, ...
   5,  3,  4,  1,  2,  0, 11,  9, 10,  7,  8,  6, 17, ...
   6,  7, 12, 13, 18, 19,  0,  1, 14, 15, 20, 21,  2, ...
   7,  6, 13, 12, 19, 18,  1,  0, 15, 14, 21, 20,  3, ...
   8, 10, 14, 16, 20, 22,  2,  4, 12, 17, 18, 23,  0, ...
   9, 11, 15, 17, 21, 23,  3,  5, 13, 16, 19, 22,  1, ...
  10,  8, 16, 14, 22, 20,  4,  2, 17, 12, 23, 18,  5, ...
  11,  9, 17, 15, 23, 21,  5,  3, 16, 13, 22, 19,  4, ...
  12, 18,  6, 19,  7, 13, 14, 20,  0, 21,  1, 15,  8, ...
  ...
		

Crossrefs

Transpose: A261096.
Row 0 & Column 0: A001477 (identity permutation).
Row 1: A004442.
Column 1: A261098.
Main diagonal: A261099.
Cf. also A055089, A195663.
Cf. also A261216, A261217 (similar arrays, but using different orderings of permutations).
Permutations used in conjugation-formulas: A056019, A060119, A060120, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A056019(A261096(A056019(i),A056019(j))).
A(i,j) = A060119(A261217(A060126(i),A060126(j))).
A(i,j) = A060120(A261216(A060127(i),A060127(j))).
Showing 1-10 of 17 results. Next