cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090252 The Two-Up sequence: a(n) is the least positive number not already used that is coprime to the previous floor(n/2) terms.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 9, 11, 13, 17, 8, 19, 23, 25, 21, 29, 31, 37, 41, 43, 47, 53, 16, 59, 61, 67, 71, 73, 55, 79, 27, 49, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 26, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 85, 121, 223, 227, 57, 229
Offset: 1

Views

Author

Amarnath Murthy, Nov 27 2003

Keywords

Comments

a(n) is coprime to the next n terms. - David Wasserman, Oct 24 2005
All values up to a(1000000) are either prime powers or semiprimes; this suggests the sequence is unlikely to be a permutation of the integers.
It appears that a(n) is even iff n = 3*2^k-1 for some k (A083356). - N. J. A. Sloane, Nov 01 2014
The even terms in the present sequence are listed in A354255.
We have a(1) = 1 and a(2) = 2. At step k >= 2, the sequence is extended by adding two terms: a(2*k-1) = smallest unused number which is relatively prime to a(k), a(k+1), ..., a(2*k-2), and a(2*k) = smallest unused number which is relatively prime to a(k), a(k+1), ..., a(2*k-1). So at step k=2 we add a(3)=3, a(4)=5; at step k=3 we add a(5)=4, a(6)=7; and so on. - N. J. A. Sloane, May 21 2022
Comments from N. J. A. Sloane, May 23 2022: (Start)
Conjecture 1. A090252 is a subsequence of A354144 (prime powers and semiprimes).
Conjecture 2. The terms of A354144 that are missing from A090252 are 6, 10, 14, 15, 22, 33, 34, 35, 38, 39, 46, 51, 58, 62, 65, 69, 74, 77, 82, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 209, 213, 214, 215, 218, 219, 221, ...
But since there is no proof that any one of these numbers is really missing, this list cannot yet have an entry in the OEIS.
Let S_p = list of indices of terms in A090252 that are divisible by the prime p.
Conjecture 3. For a prime p, there are constants v_1, v_2, ..., v_K and c such that
S_p = { v_1, v_2, ..., v_k, lambda*2^i - 1, i >= c}.
For example, from Michael S. Branicky's 10000-term b-file, it appears that:
S_2 = { 3*2^k-1, k >= 0 } cf. A083329
S_3 = { 2^k-1, k >= 2 } cf. A000225
S_5 = { 4 then 15*2^k-1 k >= 0 } cf. A196305
S_7 = { 6, 15, then 33*2^k-1, k >= 0 }
S_11 = { 8, 29, then 61*2^k-1, k >= 0 }
S_13 = { 9, 47, 97*2^n-1, n >= 0 }
S_17 = { 10, 59, 121*2^n-1, n >= 0 }
S_19 = { 12, 63, 129*2^n-1, n >= 0 }
S_23 = { 13, 65, 133*2^n-1, n >= 0 }
S_29 = { 16, 121, 245*2^n-1, n >= 0 }
S_31 = { 17, 131, 265*2^n-1, n >= 0 }
The initial primes p and the corresponding values of lambda are:
p: 2 3 5 7 11 13 17 19 23 29 31
lambda:..3...1..15..33...61...97..121..129..133..245..265
(This sequence of lambdas does not seem to have any simpler explanation, is not in the OEIS, and cannot be since the terms shown are all conjectural.)
Conjecture 2 is a consequence of Conjecture 3. For example, 6 does not appear in A090252, since the sets S_2 and S_3 are disjoint.
Also 10 does not appear, since S_2 and S_5 are disjoint.
In fact 2*p for 3 <= p <= 11 does not appear, but 26 = 2*13 does appear since S_2 and S_13 have 47 in common.
Assuming the numbers that appear to be missing (see Conjecture 2) really are missing, the numbers that take a record number of steps to appear are 1, 2, 3, 4, 7, 8, 16, 26, 32, 64, 128, 206, 256, 478, 512, 933, ..., and the indices where they appear are 1, 2, 3, 5, 6, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 8191, .... These two sequences are not yet in the OEIS, and cannot be added since the terms are all conjectural.
(End)
From N. J. A. Sloane, Jun 06 2022 (Start)
Theorem: (a) a(n) <= prime(n-1) for all n >= 2 (cf. A354154).
(b) A stronger upper bound is the following. Let c(n) = A354166(n) denote the number of nonprime terms among a(1) .. a(n). Note c(1)=1. Then a(n) <= prime(n-c(n)) for n <> 7 and 14.
It appears that a(n) = prime(n-c(n)) for almost all n. That is, this is the equation to the line in the graph that contains most of the terms.
For example, a(34886) = 408710 (see the b-file) = prime(34886 - A354166(34886)) = prime(34886 - 374) = prime(34512) = 408710.
Another example: Consider Russ Cox's table of the first N = 5764982 terms. We see that a(5764982) = 99999989 = prime(5761455) = prime(N - 3527) which agrees with c(N) = 3527 (from the first Russ Cox link).
(End)
If we consider the May 23 2022 comment, note the conjectured indices show near complete overlap with terms of A081026: 1, 2, 3, 5, 6, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 8191. - Bill McEachen, Aug 09 2024

Crossrefs

See A247665 for the case when the numbers are required to be at least 2. A353730 is another version.
For a squarefree analog, see A354790, A354791, A354792.

Programs

Extensions

More terms from David Wasserman, Oct 24 2005

A036044 BCR(n): write in binary, complement, reverse.

Original entry on oeis.org

1, 0, 2, 0, 6, 2, 4, 0, 14, 6, 10, 2, 12, 4, 8, 0, 30, 14, 22, 6, 26, 10, 18, 2, 28, 12, 20, 4, 24, 8, 16, 0, 62, 30, 46, 14, 54, 22, 38, 6, 58, 26, 42, 10, 50, 18, 34, 2, 60, 28, 44, 12, 52, 20, 36, 4, 56, 24, 40, 8, 48, 16, 32, 0, 126, 62, 94, 30, 110, 46, 78, 14, 118, 54, 86
Offset: 0

Views

Author

Keywords

Comments

a(0) could be considered to be 0 if the binary representation of zero were chosen to be the empty string. - Jason Kimberley, Sep 19 2011
From Bernard Schott, Jun 15 2021: (Start)
Except for a(0) = 1, every term is even.
For each q >= 0, there is one and only one odd number h such that a(n) = 2*q iff n = h*2^m-1 for m >= 1 when q = 0, and for m >= 0 when q >= 1 (see A345401 and some examples below).
a(n) = 0 iff n = 2^m-1 for m >= 1 (Mersenne numbers) (A000225).
a(n) = 2 iff n = 3*2^m-1 for m >= 0 (A153893).
a(n) = 4 iff n = 7*2^m-1 for m >= 0 (A086224).
a(n) = 6 iff n = 5*2^m-1 for m >= 0 (A153894).
a(n) = 8 iff n = 15*2^m-1 for m >= 0 (A196305).
a(n) = 10 iff n = 11*2^m-1 for m >= 0 (A086225).
a(n) = 12 iff n = 13*2^m-1 for m >= 0 (A198274).
For k >= 1, a(n) = 2^k iff n = (2^(k+1)-1)*2^m - 1 for m >= 0.
Explanation for a(n) = 2:
For m >= 0, A153893(m) = 3*2^m-1 -> 1011...11 -> 0100...00 -> 10 -> 2 where 1011...11_2 is 10 followed by m 1's. (End)

Examples

			4 -> 100 -> 011 -> 110 -> 6.
		

Crossrefs

Cf. A035928 (fixed points), A195063, A195064, A195065, A195066.
Indices of terms 0, 2, 4, 6, 8, 10, 12, 14, 18, 22, 26, 30: A000225 \ {0}, A153893, A086224, A153894, A196305, A086225, A198274, A052996\{1,3}, A291557, A198276, A171389, A198275.

Programs

  • Haskell
    import Data.List (unfoldr)
    a036044 0 = 1
    a036044 n = foldl (\v d -> 2 * v + d) 0 (unfoldr bc n) where
       bc 0 = Nothing
       bc x = Just (1 - m, x') where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Sep 16 2011
    
  • Magma
    A036044:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    A036044 := proc(n)
        local bcr ;
        if n = 0 then
            return 1;
        end if;
        convert(n,base,2) ;
        bcr := [seq(1-i,i=%)] ;
        add(op(-k,bcr)*2^(k-1),k=1..nops(bcr)) ;
    end proc:
    seq(A036044(n),n=0..200) ; # R. J. Mathar, Nov 06 2017
  • Mathematica
    dtn[ L_ ] := Fold[ 2#1+#2&, 0, L ]; f[ n_ ] := dtn[ Reverse[ 1-IntegerDigits[ n, 2 ] ] ]; Table[ f[ n ], {n, 0, 100} ]
    Table[FromDigits[Reverse[IntegerDigits[n,2]/.{1->0,0->1}],2],{n,0,80}] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    a(n)=fromdigits(Vecrev(apply(n->1-n,binary(n))),2) \\ Charles R Greathouse IV, Apr 22 2015
    
  • Python
    def comp(s): z, o = ord('0'), ord('1'); return s.translate({z:o, o:z})
    def BCR(n): return int(comp(bin(n)[2:])[::-1], 2)
    print([BCR(n) for n in range(75)]) # Michael S. Branicky, Jun 14 2021
    
  • Python
    def A036044(n): return -int((s:=bin(n)[-1:1:-1]),2)-1+2**len(s) # Chai Wah Wu, Feb 04 2022

Formula

a(2n) = 2*A059894(n), a(2n+1) = a(2n) - 2^floor(log_2(n)+1). - Ralf Stephan, Aug 21 2003
Conjecture: a(n) = (-1)^A023416(n)*b(n) for n > 0 with a(0) = 1 where b(2^m) = (-1)^m*(2^(m+1) - 2) for m >= 0, b(2n+1) = b(n) for n > 0, b(2n) = b(n) + b(n - 2^f(n)) + b(2n - 2^f(n)) for n > 0 and where f(n) = A007814(n) (see A329369). - Mikhail Kurkov, Dec 13 2024

A196940 Primes of the form 15*2^k - 1.

Original entry on oeis.org

29, 59, 239, 479, 15359, 245759, 1966079, 32212254719, 32985348833279, 141670994486089356410879, 18133887294219437620592639, 72535549176877750482370559, 1246151246048358630847319119012823039, 638029437976759618993827388934565396479, 669022355955918694246071548179450845179412479
Offset: 1

Views

Author

Brad Clardy, Oct 07 2011

Keywords

Crossrefs

Primes in A196305.
Cf. A002237 (k such that 15*2^k-1 is prime).

Programs

  • Magma
    [a: n in [1..130] | IsPrime(a) where a is 15*2^n-1]; // Vincenzo Librandi, Feb 23 2014
  • Mathematica
    Select[Table[15 2^n - 1, {n, 1, 300}], PrimeQ] (* Vincenzo Librandi, Feb 23 2014 *)
  • PARI
    for(n=1,1e3,if(ispseudoprime(t=15<Charles R Greathouse IV, Oct 08 2011
    

Formula

a(n) = A196305(A002237(n)). - Elmo R. Oliveira, Feb 23 2025

A345401 a(n) is the unique odd number h such that BCR(h*2^m-1) = 2n (except for BCR(0) = 1) where BCR is bit complement and reverse per A036044.

Original entry on oeis.org

1, 3, 7, 5, 15, 11, 13, 9, 31, 23, 27, 19, 29, 21, 25, 17, 63, 47, 55, 39, 59, 43, 51, 35, 61, 45, 53, 37, 57, 41, 49, 33, 127, 95, 111, 79, 119, 87, 103, 71, 123, 91, 107, 75, 115, 83, 99, 67, 125, 93, 109, 77, 117, 85, 101, 69, 121, 89, 105, 73, 113, 81, 97, 65, 255, 191
Offset: 0

Views

Author

Bernard Schott, Jun 18 2021

Keywords

Comments

This sequence is a permutation of the odd numbers.
We have BCR(a(n)*2^m-1) = 2n when n = 0 for m >= 1, and BCR(a(n)*2^m-1) = 2n when n >= 1 for m >= 0.
Why this exception when n = 0? As a(0) = 1, we have BCR(1*2^m-1) = 2*0 = 0 only for m >= 1, because, for m = 0, we have BCR(1*2^0-1) = BCR(0) = 1 <> 2*0 = 0.

Examples

			a(0) = 1 because BCR(1*2^m-1) = 2*0 = 0 for m >= 1 (A000225).
a(1) = 3 because BCR(3*2^m-1) = 2*1 = 2 for m >= 0 (A153893).
a(2) = 7 because BCR(7*2^m-1) = 2*2 = 4 for m >= 0 (A086224).
Indeed, a(1) = 3 because 3*2^m-1 = 1011..11_2 (i.e., 10 followed by m 1's), whose bit complement is 0100..00, which reverses to 10_2 = 2 = 2*1.
Also, a(43) = 75 because 75*2^m-1 = 100101011..11_2 (i.e., 1001010 followed by m 1's), whose bit complement is 011010100..00, which reverses to 1010110_2 = 86 = 2*43.
		

Crossrefs

Cf. A036044 (BCR), A059894.
When BCR(n) = 0, 2, 4, 6, 8, 10, 12, then corresponding a(n) = h = 1, 3, 7, 5, 15, 11, 13 and numbers h*2^m-1 are respectively in A000225, A153893, A086224, A153894, A196305, A086225, A198274.

Formula

a(n) = BCR(2*n) + 1 for n >= 1.
a(n) = 2*A059894(n) + 1 for n >= 1. - Hugo Pfoertner, Jun 18 2021
Showing 1-4 of 4 results.