A197680 Numbers whose exponents in their prime power factorization are squares.
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Math StackExchange, Question 73354, 2011.
- Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
- Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv:1511.03860 [math.NT], 2015.
- Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175 (2016), pp. 385-395.
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while 0=mul(`if`(issqr( i[2]), 1, 0), i=ifactors(k)[2]) do od; k end: seq(a(n), n=1..80); # Alois P. Heinz, Jun 30 2016
-
Mathematica
Select[Range[100], Union[IntegerQ /@ Sqrt[Transpose[FactorInteger[#]][[2]]]][[1]] &] (* T. D. Noe, Oct 18 2011 *)
-
PARI
isok(n) = {my(f = factor(n)[,2]); #select(x->issquare(x), f) == #f; } \\ Michel Marcus, Oct 23 2015
Formula
Sum_{i<=x, i is in A197680} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c=4*sqrt(2.4/log 2)=7.44308... and h=Product_{prime p} (1+Sum_{i>=2} (u(i)-u(i-1))/p^i)=0.641115... where u(n) is the characteristic function of sequence A000290. The calculations of h in the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses. For a proof of the formula, see the first Shevelev link. - Vladimir Shevelev, Nov 17 2015
Extensions
Reformulation of the name by Vladimir Shevelev, Oct 14 2015
Comments